Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,624 Bytes
c0ec7e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
from datetime import timedelta
from pathlib import Path
import re
from time import time
from typing import Any, Tuple
import pandas as pd
from hydra import TaskFunction
from hydra.core.hydra_config import HydraConfig
from hydra.core.utils import _save_config
from hydra.experimental.callbacks import Callback
from hydra.types import RunMode
from omegaconf import DictConfig, OmegaConf
from deepscreen.utils import get_logger
log = get_logger(__name__)
class CSVExperimentSummary(Callback):
"""On multirun end, aggregate the results from each job's metrics.csv and save them in metrics_summary.csv."""
def __init__(self, filename: str = 'experiment_summary.csv', prefix: str | Tuple[str] = 'test/'):
self.filename = filename
self.prefix = prefix if isinstance(prefix, str) else tuple(prefix)
self.input_experiment_summary = None
self.time = {}
def on_multirun_start(self, config: DictConfig, **kwargs: Any) -> None:
if config.hydra.get('overrides') and config.hydra.overrides.get('task'):
for i, override in enumerate(config.hydra.overrides.task):
if override.startswith("ckpt_path"):
ckpt_path = override.split('=', 1)[1]
if ckpt_path.endswith(('.csv', '.txt', '.tsv', '.ssv', '.psv')):
config.hydra.overrides.task[i] = self.parse_ckpt_path_from_experiment_summary(ckpt_path)
break
if config.hydra.sweeper.get('params'):
if config.hydra.sweeper.params.get('ckpt_path'):
ckpt_path = str(config.hydra.sweeper.params.ckpt_path).strip("'\"")
if ckpt_path.endswith(('.csv', '.txt', '.tsv', '.ssv', '.psv')):
config.hydra.sweeper.params.ckpt_path = self.parse_ckpt_path_from_experiment_summary(ckpt_path)
def on_job_start(self, config: DictConfig, *, task_function: TaskFunction, **kwargs: Any) -> None:
self.time['start'] = time()
def on_job_end(self, config: DictConfig, job_return, **kwargs: Any) -> None:
# Skip callback if job is DDP subprocess
if "ddp" in job_return.hydra_cfg.hydra.job.name:
return
try:
self.time['end'] = time()
if config.hydra.mode == RunMode.RUN:
summary_file_path = Path(config.hydra.run.dir) / self.filename
elif config.hydra.mode == RunMode.MULTIRUN:
summary_file_path = Path(config.hydra.sweep.dir) / self.filename
else:
raise RuntimeError('Invalid Hydra `RunMode`.')
if summary_file_path.is_file():
summary_df = pd.read_csv(summary_file_path)
else:
summary_df = pd.DataFrame()
# Add job and override info
info_dict = {}
if job_return.overrides:
info_dict = dict(override.split('=', 1) for override in job_return.overrides)
info_dict['job_status'] = job_return.status.name
info_dict['job_id'] = job_return.hydra_cfg.hydra.job.id
info_dict['wall_time'] = str(timedelta(self.time['end'] - self.time['start']))
# Add checkpoint info
if info_dict.get('ckpt_path'):
info_dict['ckpt_path'] = str(info_dict['ckpt_path']).strip("'\"")
ckpt_path = str(job_return.cfg.ckpt_path).strip("'\"")
if Path(ckpt_path).is_file():
if info_dict.get('ckpt_path') and ckpt_path != info_dict['ckpt_path']:
info_dict['previous_ckpt_path'] = info_dict['ckpt_path']
info_dict['ckpt_path'] = ckpt_path
info_dict['best_epoch'] = int(re.search(r'epoch_(\d+)', info_dict['ckpt_path']).group(1))
# Add metrics info
metrics_df = pd.DataFrame()
if config.get('logger'):
output_dir = Path(config.hydra.runtime.output_dir).resolve()
csv_metrics_path = output_dir / config.logger.csv.name / "metrics.csv"
if csv_metrics_path.is_file():
log.info(f"Summarizing metrics with prefix `{self.prefix}` from {csv_metrics_path}")
metrics_df = pd.read_csv(csv_metrics_path)
# Find rows where 'test/' columns are not null and reset its epoch to the best model epoch
test_columns = [col for col in metrics_df.columns if col.startswith('test/')]
if test_columns:
mask = metrics_df[test_columns].notna().any(axis=1)
metrics_df.loc[mask, 'epoch'] = info_dict['best_epoch']
# Group and filter by best epoch
metrics_df = metrics_df.groupby('epoch').first()
metrics_df = metrics_df[metrics_df.index == info_dict['best_epoch']]
else:
log.info(f"No metrics.csv found in {output_dir}")
if metrics_df.empty:
metrics_df = pd.DataFrame(data=info_dict, index=[0])
else:
metrics_df = metrics_df.assign(**info_dict)
metrics_df.index = [0]
# Add extra info from the input batch experiment summary
if self.input_experiment_summary is not None and 'ckpt_path' in metrics_df.columns:
orig_meta = self.input_experiment_summary[
self.input_experiment_summary['ckpt_path'] == metrics_df['ckpt_path'][0]
].head(1)
if not orig_meta.empty:
orig_meta.index = [0]
metrics_df = metrics_df.combine_first(orig_meta)
summary_df = pd.concat([summary_df, metrics_df])
# Drop empty columns
summary_df.dropna(inplace=True, axis=1, how='all')
summary_df.to_csv(summary_file_path, index=False, mode='w')
log.info(f"Experiment summary saved to {summary_file_path}")
except Exception as e:
log.exception("Unable to save the experiment summary due to an error.", exc_info=e)
def parse_ckpt_path_from_experiment_summary(self, ckpt_path):
try:
self.input_experiment_summary = pd.read_csv(
ckpt_path, usecols=lambda col: not col.startswith(self.prefix)
)
self.input_experiment_summary['ckpt_path'] = self.input_experiment_summary['ckpt_path'].apply(
lambda x: x.strip("'\"")
)
ckpt_list = list(set(self.input_experiment_summary['ckpt_path']))
parsed_ckpt_path = ','.join([f"'{ckpt}'" for ckpt in ckpt_list])
return parsed_ckpt_path
except Exception as e:
log.exception(
f'Error in parsing checkpoint paths from experiment_summary file ({ckpt_path}).',
exc_info=e
)
def checkpoint_rerun_config(config: DictConfig):
hydra_cfg = HydraConfig.get()
if hydra_cfg.output_subdir is not None:
ckpt_cfg_path = Path(config.ckpt_path).parents[1] / hydra_cfg.output_subdir / 'config.yaml'
hydra_output = Path(hydra_cfg.runtime.output_dir) / hydra_cfg.output_subdir
if ckpt_cfg_path.is_file():
log.info(f"Found config file for the checkpoint at {str(ckpt_cfg_path)}; "
f"merging config overrides with checkpoint config...")
ckpt_cfg = OmegaConf.load(ckpt_cfg_path)
# Merge checkpoint config with test config by overriding specified nodes.
# ckpt_cfg = OmegaConf.masked_copy(ckpt_cfg, ['model', 'data', 'trainer', 'task'])
# ckpt_cfg.data = OmegaConf.masked_copy(ckpt_cfg.data, [
# key for key in ckpt_cfg.data.keys() if key not in ['data_file', 'split', 'train_val_test_split']
# ])
#
# config = OmegaConf.merge(ckpt_cfg, config)
# config = OmegaConf.masked_copy(config,
# [key for key in config if key not in
# ['task']])
# config.data = OmegaConf.masked_copy(config.data,
# [key for key in config.data if key not in
# ['drug_featurizer', 'protein_featurizer', 'collator']])
# config.model = OmegaConf.masked_copy(config.model,
# [key for key in config.model if key not in
# ['predictor']])
#
# config = OmegaConf.merge(ckpt_cfg, config)
ckpt_cfg = OmegaConf.masked_copy(ckpt_cfg, ['model', 'data', 'task', 'seed'])
ckpt_cfg.data = OmegaConf.masked_copy(ckpt_cfg.data, [
key for key in ckpt_cfg.data.keys() if key not in ['data_file', 'split', 'train_val_test_split']
])
ckpt_override_keys = ['task', 'data.drug_featurizer', 'data.protein_featurizer', 'data.collator',
'model.predictor', 'model.out', 'model.loss', 'model.activation', 'model.metrics']
for key in ckpt_override_keys:
OmegaConf.update(config, key, OmegaConf.select(ckpt_cfg, key), force_add=True)
config = OmegaConf.merge(ckpt_cfg, config)
# OmegaConf.set_readonly(hydra_cfg, False)
# hydra_cfg.job.override_dirname += f"ckpt={str(Path(*Path(config.ckpt_path).parts[-4:]))}"
_save_config(config, "config.yaml", hydra_output)
return config
|