Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 16,147 Bytes
c0ec7e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
from functools import partial
from numbers import Number
from pathlib import Path
from typing import Any, Dict, Optional, Sequence, Union, Literal
from lightning import LightningDataModule
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import Dataset, DataLoader
from deepscreen.data.utils import label_transform, collate_fn, SafeBatchSampler
from deepscreen.utils import get_logger
log = get_logger(__name__)
# TODO: save a list of corrupted records
class DTIDataset(Dataset):
def __init__(
self,
task: Literal['regression', 'binary', 'multiclass'],
n_class: Optional[int],
data_path: str | Path,
drug_featurizer: callable,
protein_featurizer: callable,
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
discard_intermediate: Optional[bool] = False,
):
df = pd.read_csv(
data_path,
engine='python',
header=0,
usecols=lambda x: x in ['X1', 'ID1', 'X2', 'ID2', 'Y', 'U'],
dtype={
'X1': 'str',
'ID1': 'str',
'X2': 'str',
'ID2': 'str',
'Y': 'float32',
'U': 'str',
},
)
# Read the whole data table
# if 'ID1' in df:
# self.x1_to_id1 = dict(zip(df['X1'], df['ID1']))
# if 'ID2' in df:
# self.x2_to_id2 = dict(zip(df['X2'], df['ID2']))
# self.id2_to_indexes = dict(zip(df['ID2'], range(len(df['ID2']))))
# self.x2_to_indexes = dict(zip(df['X2'], range(len(df['X2']))))
# # train and eval mode data processing (fully labelled)
# if 'Y' in df.columns and df['Y'].notnull().all():
log.info(f"Processing data file: {data_path}")
# Forward-fill all non-label columns
df.loc[:, df.columns != 'Y'] = df.loc[:, df.columns != 'Y'].ffill(axis=0)
if 'Y' in df:
log.info(f"Performing pre-transformation target validation.")
# TODO: check sklearn.utils.multiclass.check_classification_targets
match task:
case 'regression':
assert all(df['Y'].apply(lambda x: isinstance(x, Number))), \
f"""`Y` must be numeric for `regression` task,
but it has {set(df['Y'].apply(type))}."""
case 'binary':
if all(df['Y'].isin([0, 1])):
assert not thresholds, \
f"""`Y` is already 0 or 1 for `binary` (classification) `task`,
but still got `thresholds` {thresholds}.
Double check your choices of `task` and `thresholds` and records in the `Y` column."""
else:
assert thresholds, \
f"""`Y` must be 0 or 1 for `binary` (classification) `task`,
but it has {pd.unique(df['Y'])}.
You must set `thresholds` to discretize continuous labels."""
case 'multiclass':
assert n_class >= 3, f'`n_class` for `multiclass` (classification) `task` must be at least 3.'
if all(df['Y'].apply(lambda x: x.is_integer() and x >= 0)):
assert not thresholds, \
f"""`Y` is already non-negative integers for
`multiclass` (classification) `task`, but still got `thresholds` {thresholds}.
Double check your choice of `task`, `thresholds` and records in the `Y` column."""
else:
assert thresholds, \
f"""`Y` must be non-negative integers for
`multiclass` (classification) 'task',but it has {pd.unique(df['Y'])}.
You must set `thresholds` to discretize continuous labels."""
if 'U' in df.columns:
units = df['U']
else:
units = None
log.warning("Units ('U') not in the data table. "
"Assuming all labels to be discrete or in p-scale (-log10[M]).")
# Transform labels
df['Y'] = label_transform(labels=df['Y'], units=units, thresholds=thresholds,
discard_intermediate=discard_intermediate)
# Filter out rows with a NaN in Y (missing values)
df.dropna(subset=['Y'], inplace=True)
log.info(f"Performing post-transformation target validation.")
match task:
case 'regression':
df['Y'] = df['Y'].astype('float32')
assert all(df['Y'].apply(lambda x: isinstance(x, Number))), \
f"""`Y` must be numeric for `regression` task,
but after transformation it still has {set(df['Y'].apply(type))}.
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
case 'binary':
df['Y'] = df['Y'].astype('int')
assert all(df['Y'].isin([0, 1])), \
f"""`Y` must be 0 or 1 for `binary` (classification) `task`, "
but after transformation it still has {pd.unique(df['Y'])}.
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
case 'multiclass':
df['Y'] = df['Y'].astype('int')
assert all(df['Y'].apply(lambda x: x.is_integer() and x >= 0)), \
f"""Y must be non-negative integers for task `multiclass` (classification)
but after transformation it still has {pd.unique(df['Y'])}.
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
target_n_unique = df['Y'].nunique()
assert target_n_unique == n_class, \
f"""You have set `n_class` for `multiclass` (classification) `task` to {n_class},
but after transformation Y still has {target_n_unique} unique labels.
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
# Indexed protein/FASTA for retrieval metrics
df['IDX'] = LabelEncoder().fit_transform(df['X2'])
self.df = df
self.drug_featurizer = drug_featurizer if drug_featurizer is not None else (lambda x: x)
self.protein_featurizer = protein_featurizer if protein_featurizer is not None else (lambda x: x)
def __len__(self):
return len(self.df.index)
def __getitem__(self, i):
sample = self.df.loc[i]
return {
'N': i,
'X1': self.drug_featurizer(sample['X1']),
'ID1': sample.get('ID1', sample['X1']),
'X2': self.protein_featurizer(sample['X2']),
'ID2': sample.get('ID2', sample['X2']),
'Y': sample.get('Y'),
'IDX': sample['IDX'],
}
class DTIDataModule(LightningDataModule):
"""
DTI DataModule
A DataModule implements 5 key methods:
def prepare_data(self):
# things to do on 1 GPU/TPU (not on every GPU/TPU in DDP)
# download data, pre-process, split, save to disk, etc.
def setup(self, stage):
# things to do on every process in DDP
# load data, set variables, etc.
def train_dataloader(self):
# return train dataloader
def val_dataloader(self):
# return validation dataloader
def test_dataloader(self):
# return test dataloader
def teardown(self):
# called on every process in DDP
# clean up after fit or test
This allows you to share a full dataset without explaining how to download,
split, transform and process the data.
Read the docs:
https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html
"""
def __init__(
self,
task: Literal['regression', 'binary', 'multiclass'],
n_class: Optional[int],
batch_size: int,
# train: bool,
drug_featurizer: callable,
protein_featurizer: callable,
collator: callable = collate_fn,
data_dir: str = "data/",
data_file: Optional[str] = None,
train_val_test_split: Optional[Union[Sequence[Number | str]]] = None,
split: Optional[callable] = None,
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
discard_intermediate: Optional[bool] = False,
num_workers: int = 0,
pin_memory: bool = False,
):
super().__init__()
self.train_data: Optional[Dataset] = None
self.val_data: Optional[Dataset] = None
self.test_data: Optional[Dataset] = None
self.predict_data: Optional[Dataset] = None
self.split = split
self.collator = collator
self.dataset = partial(
DTIDataset,
task=task,
n_class=n_class,
drug_featurizer=drug_featurizer,
protein_featurizer=protein_featurizer,
thresholds=thresholds,
discard_intermediate=discard_intermediate
)
if train_val_test_split:
# TODO test behavior for trainer.test and predict when this is passed
if len(train_val_test_split) not in [2, 3]:
raise ValueError('Length of `train_val_test_split` must be 2 (for training without testing) or 3.')
if all([data_file, split]):
if all(isinstance(split, Number) for split in train_val_test_split):
pass
else:
raise ValueError('`train_val_test_split` must be a sequence numbers '
'(float for percentages and int for sample numbers) '
'if both `data_file` and `split` have been specified.')
elif all(isinstance(split, str) for split in train_val_test_split) and not any([data_file, split]):
split_paths = []
for split in train_val_test_split:
split = Path(split)
if not split.is_absolute():
split = Path(data_dir, split)
split_paths.append(split)
self.train_data = self.dataset(data_path=split_paths[0])
self.val_data = self.dataset(data_path=split_paths[1])
if len(train_val_test_split) == 3:
self.test_data = self.dataset(data_path=split_paths[2])
else:
raise ValueError('For training, you must specify either `data_file`, `split`, '
'and `train_val_test_split` as a sequence of numbers or '
'solely `train_val_test_split` as a sequence of data file paths.')
elif data_file and not any([split, train_val_test_split]):
data_file = Path(data_file)
if not data_file.is_absolute():
data_file = Path(data_dir, data_file)
self.test_data = self.predict_data = self.dataset(data_path=data_file)
else:
raise ValueError("For training, you must specify `train_val_test_split`. "
"For testing/predicting, you must specify only `data_file` without "
"`train_val_test_split` or `split`.")
# this line allows to access init params with 'self.hparams' attribute
# also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False) # ignore=['split']
def prepare_data(self):
"""
Download data if needed.
Do not use it to assign state (e.g., self.x = x).
"""
def setup(self, stage: Optional[str] = None, encoding: str = None):
"""
Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
careful not to execute data splitting twice.
"""
# TODO test SafeBatchSampler (which skips samples with any None without introducing variable batch size)
# load and split datasets only if not loaded in initialization
if not any([self.train_data, self.test_data, self.val_data, self.predict_data]):
self.train_data, self.val_data, self.test_data = self.split(
dataset=self.dataset(data_path=Path(self.hparams.data_dir, self.hparams.data_file)),
lengths=self.hparams.train_val_test_split
)
def train_dataloader(self):
return DataLoader(
dataset=self.train_data,
batch_sampler=SafeBatchSampler(
data_source=self.train_data,
batch_size=self.hparams.batch_size,
# Dropping the last batch prevents problems caused by variable batch sizes in training, e.g.,
# batch_size=1 in BatchNorm, and shuffling ensures the model be trained on all samples over epochs.
drop_last=True,
shuffle=True,
),
# batch_size=self.hparams.batch_size,
# shuffle=True,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
collate_fn=self.collator,
persistent_workers=True if self.hparams.num_workers > 0 else False
)
def val_dataloader(self):
return DataLoader(
dataset=self.val_data,
batch_sampler=SafeBatchSampler(
data_source=self.val_data,
batch_size=self.hparams.batch_size,
drop_last=False,
shuffle=False
),
# batch_size=self.hparams.batch_size,
# shuffle=False,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
collate_fn=self.collator,
persistent_workers=True if self.hparams.num_workers > 0 else False
)
def test_dataloader(self):
return DataLoader(
dataset=self.test_data,
batch_sampler=SafeBatchSampler(
data_source=self.test_data,
batch_size=self.hparams.batch_size,
drop_last=False,
shuffle=False
),
# batch_size=self.hparams.batch_size,
# shuffle=False,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
collate_fn=self.collator,
persistent_workers=True if self.hparams.num_workers > 0 else False
)
def predict_dataloader(self):
return DataLoader(
dataset=self.predict_data,
batch_sampler=SafeBatchSampler(
data_source=self.predict_data,
batch_size=self.hparams.batch_size,
drop_last=False,
shuffle=False
),
# batch_size=self.hparams.batch_size,
# shuffle=False,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
collate_fn=self.collator,
persistent_workers=True if self.hparams.num_workers > 0 else False
)
def teardown(self, stage: Optional[str] = None):
"""Clean up after fit or test."""
pass
def state_dict(self):
"""Extra things to save to checkpoint."""
return {}
def load_state_dict(self, state_dict: Dict[str, Any]):
"""Things to do when loading checkpoint."""
pass
|