Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 12,503 Bytes
c0ec7e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import torch.nn as nn
import torch.nn.functional as F
import torch
import math
from dgllife.model.gnn import GCN
from torch.nn.utils.weight_norm import weight_norm
class DrugBAN(nn.Module):
def __init__(
self,
drug_in_feats,
drug_embedding,
drug_hidden_feats,
protein_emb_dim,
num_filters,
kernel_size,
mlp_in_dim,
mlp_hidden_dim,
mlp_out_dim,
drug_padding,
protein_padding,
ban_heads,
):
super().__init__()
self.drug_extractor = MolecularGCN(in_feats=drug_in_feats, dim_embedding=drug_embedding,
padding=drug_padding,
hidden_feats=drug_hidden_feats)
self.protein_extractor = ProteinCNN(protein_emb_dim, num_filters, kernel_size, protein_padding)
self.bcn = weight_norm(
BANLayer(v_dim=drug_hidden_feats[-1], q_dim=num_filters[-1], h_dim=mlp_in_dim, h_out=ban_heads),
name='h_mat', dim=None)
self.mlp_classifier = MLPDecoder(mlp_in_dim, mlp_hidden_dim, mlp_out_dim)
def forward(self, bg_d, v_p):
v_d = self.drug_extractor(bg_d)
v_p = self.protein_extractor(v_p)
f, att = self.bcn(v_d, v_p)
score = self.mlp_classifier(f)
# if mode == "train":
# return v_d, v_p, f, score
# elif mode == "eval":
# return v_d, v_p, score, att
return score
class MolecularGCN(nn.Module):
def __init__(self, in_feats, dim_embedding=128, padding=True, hidden_feats=None, activation=None):
super().__init__()
self.init_transform = nn.Linear(in_feats, dim_embedding, bias=False)
if padding:
with torch.no_grad():
self.init_transform.weight[-1].fill_(0)
self.gnn = GCN(in_feats=dim_embedding, hidden_feats=hidden_feats, activation=activation)
self.output_feats = hidden_feats[-1]
def forward(self, batch_graph):
node_feats = batch_graph.ndata.pop('h')
node_feats = self.init_transform(node_feats)
node_feats = self.gnn(batch_graph, node_feats)
batch_size = batch_graph.batch_size
node_feats = node_feats.view(batch_size, -1, self.output_feats)
return node_feats
class ProteinCNN(nn.Module):
def __init__(self, embedding_dim, num_filters, kernel_size, padding=True):
super().__init__()
if padding:
self.embedding = nn.Embedding(26, embedding_dim, padding_idx=0)
else:
self.embedding = nn.Embedding(26, embedding_dim)
in_ch = [embedding_dim] + num_filters
self.in_ch = in_ch[-1]
kernels = kernel_size
self.conv1 = nn.Conv1d(in_channels=in_ch[0], out_channels=in_ch[1], kernel_size=kernels[0])
self.bn1 = nn.BatchNorm1d(in_ch[1])
self.conv2 = nn.Conv1d(in_channels=in_ch[1], out_channels=in_ch[2], kernel_size=kernels[1])
self.bn2 = nn.BatchNorm1d(in_ch[2])
self.conv3 = nn.Conv1d(in_channels=in_ch[2], out_channels=in_ch[3], kernel_size=kernels[2])
self.bn3 = nn.BatchNorm1d(in_ch[3])
def forward(self, v):
v = self.embedding(v.long())
v = v.transpose(2, 1)
v = self.bn1(F.relu(self.conv1(v)))
v = self.bn2(F.relu(self.conv2(v)))
v = self.bn3(F.relu(self.conv3(v)))
v = v.view(v.size(0), v.size(2), -1)
return v
class MLPDecoder(nn.Module):
def __init__(self, in_dim, hidden_dim, out_dim):
super().__init__()
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.bn1 = nn.BatchNorm1d(hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.bn2 = nn.BatchNorm1d(hidden_dim)
self.fc3 = nn.Linear(hidden_dim, out_dim)
self.bn3 = nn.BatchNorm1d(out_dim)
# self.fc4 = nn.Linear(out_dim, binary)
def forward(self, x):
x = self.bn1(F.relu(self.fc1(x)))
x = self.bn2(F.relu(self.fc2(x)))
x = self.bn3(F.relu(self.fc3(x)))
# x = self.fc4(x)
return x
# noinspection PyTypeChecker
class SimpleClassifier(nn.Module):
def __init__(self, in_dim, hid_dim, out_dim, dropout):
super().__init__()
layers = [
weight_norm(nn.Linear(in_dim, hid_dim), dim=None),
nn.ReLU(),
nn.Dropout(dropout, inplace=True),
weight_norm(nn.Linear(hid_dim, out_dim), dim=None)
]
self.main = nn.Sequential(*layers)
def forward(self, x):
logits = self.main(x)
return logits
class RandomLayer(nn.Module):
def __init__(self, input_dim_list, output_dim=256):
super().__init__()
self.input_num = len(input_dim_list)
self.output_dim = output_dim
self.random_matrix = [torch.randn(input_dim_list[i], output_dim) for i in range(self.input_num)]
def forward(self, input_list):
return_list = [torch.mm(input_list[i], self.random_matrix[i]) for i in range(self.input_num)]
return_tensor = return_list[0] / math.pow(float(self.output_dim), 1.0 / len(return_list))
for single in return_list[1:]:
return_tensor = torch.mul(return_tensor, single)
return return_tensor
def cuda(self, *args):
super(RandomLayer, self).cuda(*args)
self.random_matrix = [val.cuda(*args) for val in self.random_matrix]
# noinspection PyTypeChecker
class BANLayer(nn.Module):
def __init__(self, v_dim, q_dim, h_dim, h_out, act='ReLU', dropout=0.2, k=3):
super().__init__()
self.c = 32
self.k = k
self.v_dim = v_dim
self.q_dim = q_dim
self.h_dim = h_dim
self.h_out = h_out
self.v_net = FCNet([v_dim, h_dim * self.k], act=act, dropout=dropout)
self.q_net = FCNet([q_dim, h_dim * self.k], act=act, dropout=dropout)
# self.dropout = nn.Dropout(dropout[1])
if 1 < k:
self.p_net = nn.AvgPool1d(self.k, stride=self.k)
if h_out <= self.c:
self.h_mat = nn.Parameter(torch.Tensor(1, h_out, 1, h_dim * self.k).normal_())
self.h_bias = nn.Parameter(torch.Tensor(1, h_out, 1, 1).normal_())
else:
self.h_net = weight_norm(nn.Linear(h_dim * self.k, h_out), dim=None)
self.bn = nn.BatchNorm1d(h_dim)
def attention_pooling(self, v, q, att_map):
fusion_logits = torch.einsum('bvk,bvq,bqk->bk', (v, att_map, q))
if 1 < self.k:
fusion_logits = fusion_logits.unsqueeze(1) # b x 1 x d
fusion_logits = self.p_net(fusion_logits).squeeze(1) * self.k # sum-pooling
return fusion_logits
def forward(self, v, q, softmax=False):
v_num = v.size(1)
q_num = q.size(1)
if self.h_out <= self.c:
v_ = self.v_net(v)
q_ = self.q_net(q)
att_maps = torch.einsum('xhyk,bvk,bqk->bhvq', (self.h_mat, v_, q_)) + self.h_bias
else:
v_ = self.v_net(v).transpose(1, 2).unsqueeze(3)
q_ = self.q_net(q).transpose(1, 2).unsqueeze(2)
d_ = torch.matmul(v_, q_) # b x h_dim x v x q
att_maps = self.h_net(d_.transpose(1, 2).transpose(2, 3)) # b x v x q x h_out
att_maps = att_maps.transpose(2, 3).transpose(1, 2) # b x h_out x v x q
if softmax:
p = nn.functional.softmax(att_maps.view(-1, self.h_out, v_num * q_num), 2)
att_maps = p.view(-1, self.h_out, v_num, q_num)
logits = self.attention_pooling(v_, q_, att_maps[:, 0, :, :])
for i in range(1, self.h_out):
logits_i = self.attention_pooling(v_, q_, att_maps[:, i, :, :])
logits += logits_i
logits = self.bn(logits)
return logits, att_maps
# noinspection PyTypeChecker
class FCNet(nn.Module):
"""Simple class for non-linear fully connect network
Modified from https://github.com/jnhwkim/ban-vqa/blob/master/fc.py
"""
def __init__(self, dims, act='ReLU', dropout=0.0):
super().__init__()
layers = []
for i in range(len(dims) - 2):
in_dim = dims[i]
out_dim = dims[i + 1]
if 0 < dropout:
layers.append(nn.Dropout(dropout))
layers.append(weight_norm(nn.Linear(in_dim, out_dim), dim=None))
if '' != act:
layers.append(getattr(nn, act)())
if 0 < dropout:
layers.append(nn.Dropout(dropout))
layers.append(weight_norm(nn.Linear(dims[-2], dims[-1]), dim=None))
if '' != act:
layers.append(getattr(nn, act)())
self.main = nn.Sequential(*layers)
def forward(self, x):
return self.main(x)
class BCNet(nn.Module):
"""Simple class for non-linear bilinear connect network
Modified from https://github.com/jnhwkim/ban-vqa/blob/master/bc.py
"""
# noinspection PyTypeChecker
def __init__(self, v_dim, q_dim, h_dim, h_out, act='ReLU', dropout=(0.2, 0.5), k=3):
super().__init__()
self.c = 32
self.k = k
self.v_dim = v_dim
self.q_dim = q_dim
self.h_dim = h_dim
self.h_out = h_out
self.v_net = FCNet([v_dim, h_dim * self.k], act=act, dropout=dropout[0])
self.q_net = FCNet([q_dim, h_dim * self.k], act=act, dropout=dropout[0])
self.dropout = nn.Dropout(dropout[1]) # attention
if 1 < k:
self.p_net = nn.AvgPool1d(self.k, stride=self.k)
if h_out is None:
pass
elif h_out <= self.c:
self.h_mat = nn.Parameter(torch.Tensor(1, h_out, 1, h_dim * self.k).normal_())
self.h_bias = nn.Parameter(torch.Tensor(1, h_out, 1, 1).normal_())
else:
self.h_net = weight_norm(nn.Linear(h_dim * self.k, h_out), dim=None)
def forward(self, v, q):
if self.h_out is None:
v_ = self.v_net(v)
q_ = self.q_net(q)
logits = torch.einsum('bvk,bqk->bvqk', (v_, q_))
return logits
# low-rank bilinear pooling using einsum
elif self.h_out <= self.c:
v_ = self.dropout(self.v_net(v))
q_ = self.q_net(q)
logits = torch.einsum('xhyk,bvk,bqk->bhvq', (self.h_mat, v_, q_)) + self.h_bias
return logits # b x h_out x v x q
# batch outer product, linear projection
# memory efficient but slow computation
else:
v_ = self.dropout(self.v_net(v)).transpose(1, 2).unsqueeze(3)
q_ = self.q_net(q).transpose(1, 2).unsqueeze(2)
d_ = torch.matmul(v_, q_) # b x h_dim x v x q
logits = self.h_net(d_.transpose(1, 2).transpose(2, 3)) # b x v x q x h_out
return logits.transpose(2, 3).transpose(1, 2) # b x h_out x v x q
def forward_with_weights(self, v, q, w):
v_ = self.v_net(v) # b x v x d
q_ = self.q_net(q) # b x q x d
logits = torch.einsum('bvk,bvq,bqk->bk', (v_, w, q_))
if 1 < self.k:
logits = logits.unsqueeze(1) # b x 1 x d
logits = self.p_net(logits).squeeze(1) * self.k # sum-pooling
return logits
def drug_featurizer(smiles, max_drug_nodes=290):
from dgllife.utils import smiles_to_bigraph, CanonicalAtomFeaturizer, CanonicalBondFeaturizer
from deepscreen.utils import get_logger
log = get_logger(__name__)
try:
v_d = smiles_to_bigraph(smiles=smiles,
node_featurizer=CanonicalAtomFeaturizer(),
edge_featurizer=CanonicalBondFeaturizer(self_loop=True),
add_self_loop=True)
if v_d is None:
return None
actual_node_feats = v_d.ndata.pop('h')
num_actual_nodes = actual_node_feats.shape[0]
num_virtual_nodes = max_drug_nodes - num_actual_nodes
virtual_node_bit = torch.zeros([num_actual_nodes, 1])
actual_node_feats = torch.cat((actual_node_feats, virtual_node_bit), 1)
v_d.ndata['h'] = actual_node_feats
virtual_node_feat = torch.cat(
(torch.zeros(num_virtual_nodes, 74), torch.ones(num_virtual_nodes, 1)), 1
)
v_d.add_nodes(num_virtual_nodes, {"h": virtual_node_feat})
v_d = v_d.add_self_loop()
return v_d
except Exception as e:
log.warning(f"Failed to featurize SMILES ({smiles}) to graph due to {str(e)}")
return None
|