File size: 12,753 Bytes
c0ec7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# from itertools import product
from collections import namedtuple
from numbers import Number
from typing import Any, Dict, Optional, Sequence, Union, Literal

# import numpy as np
import pandas as pd
from lightning import LightningDataModule
from torch.utils.data import Dataset, DataLoader, random_split

from deepscreen.data.utils.label import label_transform
from deepscreen.data.utils.collator import collate_fn
from deepscreen.data.utils.sampler import SafeBatchSampler


class DTIDataset(Dataset):
    def __init__(
            self,
            task: Literal['regression', 'binary', 'multiclass'],
            n_classes: Optional[int],
            data_dir: str,
            dataset_name: str,
            drug_featurizer: callable,
            protein_featurizer: callable,
            thresholds: Optional[Union[Number, Sequence[Number]]] = None,
            discard_intermediate: Optional[bool] = False,
    ):
        df = pd.read_csv(
            f'{data_dir}{dataset_name}.csv',
            header=0, sep=',',
            usecols=lambda x: x in ['X1', 'ID1', 'X2', 'ID2', 'Y', 'U'],
            dtype={'X1': 'str', 'ID1': 'str',
                   'X2': 'str', 'ID2': 'str',
                   'Y': 'float32', 'U': 'str'}
        )
        # if 'ID1' in df:
        #     self.x1_to_id1 = dict(zip(df['X1'], df['ID1']))
        # if 'ID2' in df:
        #     self.x2_to_id2 = dict(zip(df['X2'], df['ID2']))
        #     self.id2_to_indexes = dict(zip(df['ID2'], range(len(df['ID2']))))
        # self.x2_to_indexes = dict(zip(df['X2'], range(len(df['X2']))))

        # # train and eval mode data processing (fully labelled)
        # if 'Y' in df.columns and df['Y'].notnull().all():

        # Forward-fill all non-label columns
        df.loc[:, df.columns != 'Y'] = df.loc[:, df.columns != 'Y'].ffill(axis=0)

        if 'Y' in df:
            # Transform labels
            df['Y'] = df['Y'].apply(label_transform, units=df.get('U', None), thresholds=thresholds,
                                    discard_intermediate=discard_intermediate).astype('float32')

            # Filter out rows with a NaN in Y (missing values)
            df.dropna(subset=['Y'], inplace=True)

            # Validate target labels for training/testing
            # TODO: check sklearn.utils.multiclass.check_classification_targets
            match task:
                case 'regression':
                    assert all(df['Y'].apply(lambda x: isinstance(x, Number))), \
                        f"Y for task `regression` must be numeric; got {set(df['Y'].apply(type))}."
                case 'binary':
                    assert all(df['Y'].isin([0, 1])), \
                        f"Y for task `binary` (classification) must be 0 or 1, but Y got {pd.unique(df['Y'])}." \
                        "\nYou may set `thresholds` to discretize continuous labels."
                case 'multiclass':
                    assert n_classes >= 3, f'n_classes for task `multiclass` (classification) must be at least 3.'
                    assert all(df['Y'].apply(lambda x: x.is_integer() and x >= 0)), \
                        f"Y for task `multiclass` (classification) must be non-negative integers, " \
                        f"but Y got {pd.unique(df['Y'])}." \
                        "\nYou may set `thresholds` to discretize continuous labels."
                    target_n_unique = df['Y'].nunique()
                    assert target_n_unique == n_classes, \
                        f"You have set n_classes for task `multiclass` (classification) task to {n_classes}, " \
                        f"but Y has {target_n_unique} unique labels."

        # # Predict mode data processing
        # else:
        #     df = pd.DataFrame(product(df['X1'].dropna(), df['X2'].dropna()), columns=['X1', 'X2'])
        #     if hasattr(self, "x1_to_id1"):
        #         df['ID1'] = df['X1'].map(self.x1_to_id1)
        #     if hasattr(self, "x1_to_id2"):
        #         df['ID2'] = df['X2'].map(self.x2_to_id2)

        # self.smiles = df['X1']
        # self.fasta = df['X2']
        # self.smiles_ids = df.get('ID1', df['X1'])
        # self.fasta_ids = df.get('ID2', df['X2'])
        # self.labels = df.get('Y', None)

        self.df = df
        self.drug_featurizer = drug_featurizer if drug_featurizer is not None else (lambda x: x)
        self.protein_featurizer = protein_featurizer if protein_featurizer is not None else (lambda x: x)
        self.n_classes = df['Y'].nunique()
        # self.train = train

        self.Data = namedtuple('Data', ['FT1', 'ID1', 'FT2', 'ID2', 'Y'])

    def __len__(self):
        return len(self.df.index)

    def __getitem__(self, idx):
        sample = self.df.loc[idx]
        return self.Data(
            FT1=self.drug_featurizer(sample['X1']),
            ID1=sample.get('ID1', sample['X1']),
            FT2=self.protein_featurizer(sample['X2']),
            ID2=sample.get('ID2', sample['X2']),
            Y=sample.get('Y')
        )
        #     {
        #     'FT1': self.drug_featurizer(sample['X1']),
        #     'ID1': sample.get('ID1', sample['X1']),
        #     'FT2': self.protein_featurizer(sample['X2']),
        #     'ID2': sample.get('ID2', sample['X2']),
        #     'Y': sample.get('Y')
        # }
        # if self.train:
        # sample = self.drug_featurizer(self.smiles[idx]), self.protein_featurizer(self.fasta[idx]), self.labels[idx]
        # sample = {
        #     'FT1': self.drug_featurizer(self.smiles[idx]),
        #     'FT2': self.protein_featurizer(self.fasta[idx]),
        #     'ID2': self.smiles_ids[idx],
        # }
        # else:
        #     # sample = self.drug_featurizer(self.smiles[idx]), self.protein_featurizer(self.fasta[idx])
        #     sample = {
        #         'FT1': self.drug_featurizer(self.smiles[idx]),
        #         'FT2': self.protein_featurizer(self.fasta[idx]),
        #     }
        #
        # if all([True if n is not None else False for n in sample.values()]):
        #     return sample  # | {
        #     #     'ID1': self.smiles_ids[idx],
        #     #     'X1': self.drug_featurizer(self.smiles[idx]),
        #     #     'ID2': self.fasta_ids[idx],
        #     #     'X2': self.protein_featurizer(self.fasta[idx]),
        #     # }
        # else:
        #     return self.__getitem__(np.random.randint(0, self.size))


class DTIdatamodule(LightningDataModule):
    """
    DTI DataModule

    A DataModule implements 5 key methods:

        def prepare_data(self):
            # things to do on 1 GPU/TPU (not on every GPU/TPU in DDP)
            # download data, pre-process, split, save to disk, etc.
        def setup(self, stage):
            # things to do on every process in DDP
            # load data, set variables, etc.
        def train_dataloader(self):
            # return train dataloader
        def val_dataloader(self):
            # return validation dataloader
        def test_dataloader(self):
            # return test dataloader
        def teardown(self):
            # called on every process in DDP
            # clean up after fit or test

    This allows you to share a full dataset without explaining how to download,
    split, transform and process the data.

    Read the docs:
        https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html
    """

    def __init__(
            self,
            task: Literal['regression', 'binary', 'multiclass'],
            n_classes: Optional[int],
            train: bool,
            drug_featurizer: callable,
            protein_featurizer: callable,
            batch_size: int,
            train_val_test_split: Optional[Sequence[Number]],
            num_workers: int = 0,
            thresholds: Optional[Union[Number, Sequence[Number]]] = None,
            pin_memory: bool = False,
            data_dir: str = "data/",
            dataset_name: Optional[str] = None,
            split: Optional[callable] = random_split,
    ):
        super().__init__()

        # this line allows to access init params with 'self.hparams' attribute
        # also ensures init params will be stored in ckpt
        self.save_hyperparameters(logger=False)

        # data processing
        self.data_split = split

        self.data_train: Optional[Dataset] = None
        self.data_val: Optional[Dataset] = None
        self.data_test: Optional[Dataset] = None
        self.data_predict: Optional[Dataset] = None

    def prepare_data(self):
        """
        Download data if needed.
        Do not use it to assign state (e.g., self.x = x).
        """

    def setup(self, stage: Optional[str] = None, encoding: str = None):
        """
        Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
        This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
        careful not to execute data splitting twice.
        """
        # TODO test SafeBatchSampler (which skips samples with any None without introducing variable batch size)
        # load and split datasets only if not loaded in initialization
        if not any([self.data_train, self.data_val, self.data_test, self.data_predict]):
            dataset = DTIDataset(
                task=self.hparams.task,
                n_classes=self.hparams.n_classes,
                data_dir=self.hparams.data_dir,
                drug_featurizer=self.hparams.drug_featurizer,
                protein_featurizer=self.hparams.protein_featurizer,
                dataset_name=self.hparams.dataset_name,
                thresholds=self.hparams.thresholds,
            )

            if self.hparams.train:
                self.data_train, self.data_val, self.data_test = self.data_split(
                    dataset=dataset,
                    lengths=self.hparams.train_val_test_split
                )
            else:
                self.data_test = self.data_predict = dataset

    def train_dataloader(self):
        return DataLoader(
            dataset=self.data_train,
            batch_sampler=SafeBatchSampler(
                data_source=self.data_train,
                batch_size=self.hparams.batch_size,
                drop_last=True,
                shuffle=True,
            ),
            # batch_size=self.hparams.batch_size,
            # shuffle=True,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            collate_fn=collate_fn,
            persistent_workers=True if self.hparams.num_workers > 0 else False
        )

    def val_dataloader(self):
        return DataLoader(
            dataset=self.data_val,
            batch_sampler=SafeBatchSampler(
                data_source=self.data_val,
                batch_size=self.hparams.batch_size,
                drop_last=False,
                shuffle=False,
            ),
            # batch_size=self.hparams.batch_size,
            # shuffle=False,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            collate_fn=collate_fn,
            persistent_workers=True if self.hparams.num_workers > 0 else False
        )

    def test_dataloader(self):
        return DataLoader(
            dataset=self.data_test,
            batch_sampler=SafeBatchSampler(
                data_source=self.data_test,
                batch_size=self.hparams.batch_size,
                drop_last=False,
                shuffle=False,
            ),
            # batch_size=self.hparams.batch_size,
            # shuffle=False,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            collate_fn=collate_fn,
            persistent_workers=True if self.hparams.num_workers > 0 else False
        )

    def predict_dataloader(self):
        return DataLoader(
            dataset=self.data_predict,
            batch_sampler=SafeBatchSampler(
                data_source=self.data_predict,
                batch_size=self.hparams.batch_size,
                drop_last=False,
                shuffle=False,
            ),
            # batch_size=self.hparams.batch_size,
            # shuffle=False,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            collate_fn=collate_fn,
            persistent_workers=True if self.hparams.num_workers > 0 else False
        )

    def teardown(self, stage: Optional[str] = None):
        """Clean up after fit or test."""
        pass

    def state_dict(self):
        """Extra things to save to checkpoint."""
        return {}

    def load_state_dict(self, state_dict: Dict[str, Any]):
        """Things to do when loading checkpoint."""
        pass