File size: 30,645 Bytes
22761bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
import torch
from torch import nn


class ArkDTA(nn.Module):
    def __init__(self, args):
        super(Net, self).__init__()
        self.layer = nn.ModuleDict()
        analysis_mode = args.analysis_mode
        h = args.arkdta_hidden_dim
        d = args.hp_dropout_rate
        esm = args.arkdta_esm_model
        esm_freeze = args.arkdta_esm_freeze
        E = args.arkdta_ecfpvec_dim
        L = args.arkdta_sab_depth
        A = args.arkdta_attention_option
        K = args.arkdta_num_heads
        assert 'ARKMAB' in args.arkdta_residue_addon

        self.layer['prot_encoder'] = FastaESM(h, esm, esm_freeze, analysis_mode)
        self.layer['comp_encoder'] = EcfpConverter(h, L, E, analysis_mode)
        self.layer['intg_arkmab'] = load_residue_addon(args)
        self.layer['intg_pooling'] = load_complex_decoder(args)
        self.layer['ba_predictor'] = AffinityMLP(h)
        self.layer['dt_predictor'] = InteractionMLP(h)

    def load_auxiliary_materials(self, **kwargs):
        return_batch = kwargs['return_batch']

        b = kwargs['atomresi_adj'].size(0)
        x, y, z = kwargs['encoder_attention'].size()
        logits0 = kwargs['encoder_attention'].view(x // b, b, y, z).mean(0)[:, :, :-1].sum(2).unsqueeze(
            2)  # actual compsub
        logits1 = kwargs['encoder_attention'].view(x // b, b, y, z).mean(0)[:, :, -1].unsqueeze(2)  # inactive site
        return_batch['task/es_pred'] = torch.cat([logits1, logits0], 2)
        return_batch['task/es_true'] = (kwargs['atomresi_adj'].sum(1) > 0.).long().squeeze(1)
        return_batch['mask/es_resi'] = (kwargs['atomresi_masks'].sum(1) > 0.).float().squeeze(1)

        return return_batch

    def forward(self, batch):
        return_batch = dict()
        residue_features, residue_masks, residue_fastas = batch[0], batch[1], batch[2]
        ecfp_words, ecfp_masks = batch[3], batch[4]
        atomresi_adj, atomresi_masks = batch[5], batch[6]
        bav, dti, cids = batch[7], batch[8], batch[-1]

        # Protein Encoder Module
        residue_features = self.layer['prot_encoder'](X=residue_features,
                                                      fastas=residue_fastas,
                                                      masks=residue_masks)
        residue_masks = residue_features[1]
        residue_temps = residue_features[2]
        protein_features = residue_features[3]
        residue_features = residue_features[0]
        return_batch['temp/lm_related'] = residue_temps * 0.

        # Ligand Encoder Module
        cstruct_features = self.layer['comp_encoder'](ecfp_words=ecfp_words,
                                                      ecfp_masks=ecfp_masks)
        cstruct_masks = cstruct_features[1]
        cstruct_features = cstruct_features[0]

        # Protein-Ligand Integration Module (ARK-MAB)
        residue_results = self.layer['intg_arkmab'](residue_features=residue_features, residue_masks=residue_masks,
                                                    ligelem_features=cstruct_features, ligelem_masks=cstruct_masks)
        residue_features, residue_masks, attention_weights = residue_results
        del residue_results;
        torch.cuda.empty_cache()

        # Protein-Ligand Integration Module (Pooling Layer)
        complex_results = self.layer['intg_pooling'](residue_features=residue_features,
                                                     residue_masks=residue_masks,
                                                     attention_weights=attention_weights,
                                                     protein_features=protein_features)
        binding_complex, _, _, _ = complex_results
        del complex_results;
        torch.cuda.empty_cache()

        # Drug-Target Outcome Predictor
        bav_predicted = self.layer['ba_predictor'](binding_complex=binding_complex)
        dti_predicted = self.layer['dt_predictor'](binding_complex=binding_complex)

        return_batch['task/ba_pred'] = bav_predicted.view(-1)
        return_batch['task/dt_pred'] = dti_predicted.view(-1)
        return_batch['task/ba_true'] = bav.view(-1)
        return_batch['task/dt_true'] = dti.view(-1)
        return_batch['meta/cid'] = cids

        # Additional Materials for Calculating Auxiliary Loss
        return_batch = self.load_auxiliary_materials(return_batch=return_batch,
                                                     atomresi_adj=atomresi_adj,
                                                     atomresi_masks=atomresi_masks,
                                                     encoder_attention=attention_weights)

        return return_batch

    @torch.no_grad()
    def infer(self, batch):
        return_batch = dict()
        residue_features, residue_masks, residue_fastas = batch[0], batch[1], batch[2]
        ecfp_words, ecfp_masks = batch[3], batch[4]
        bav, dti, cids = batch[7], batch[8], batch[-1]

        # Protein Encoder Module
        residue_features = self.layer['prot_encoder'](X=residue_features,
                                                      fastas=residue_fastas,
                                                      masks=residue_masks)
        residue_masks = residue_features[1]
        residue_temps = residue_features[2]
        protein_features = residue_features[3]
        residue_features = residue_features[0]
        return_batch['temp/lm_related'] = residue_temps * 0.

        # Ligand Encoder Module
        cstruct_features = self.layer['comp_encoder'](ecfp_words=ecfp_words,
                                                      ecfp_masks=ecfp_masks)
        cstruct_masks = cstruct_features[1]
        cstruct_features = cstruct_features[0]

        # Protein-Ligand Integration Module (ARK-MAB)
        residue_results = self.layer['intg_arkmab'](residue_features=residue_features, residue_masks=residue_masks,
                                                    ligelem_features=cstruct_features, ligelem_masks=cstruct_masks)
        residue_features, residue_masks, attention_weights = residue_results
        del residue_results;
        torch.cuda.empty_cache()

        # Protein-Ligand Integration Module (Pooling Layer)
        complex_results = self.layer['intg_pooling'](residue_features=residue_features,
                                                     residue_masks=residue_masks,
                                                     attention_weights=attention_weights,
                                                     protein_features=protein_features)
        binding_complex, _, _, _ = complex_results
        del complex_results;
        torch.cuda.empty_cache()

        # Drug-Target Outcome Predictor
        bav_predicted = self.layer['ba_predictor'](binding_complex=binding_complex)
        dti_predicted = self.layer['dt_predictor'](binding_complex=binding_complex)

        return_batch['task/ba_pred'] = bav_predicted.view(-1)
        return_batch['task/dt_pred'] = dti_predicted.view(-1)
        return_batch['task/ba_true'] = bav.view(-1)
        return_batch['task/dt_true'] = dti.view(-1)
        return_batch['meta/cid'] = cids

        return return_batch


class GraphDenseSequential(nn.Sequential):
    def __init__(self, *args):
        super(GraphDenseSequential, self).__init__(*args)

    def forward(self, X, adj, mask):
        for module in self._modules.values():
            try:
                X = module(X, adj, mask)
            except BaseException:
                X = module(X)

        return X


class MaskedGlobalPooling(nn.Module):
    def __init__(self, pooling='max'):
        super(MaskedGlobalPooling, self).__init__()
        self.pooling = pooling

    def forward(self, x, adj, masks):
        if x.dim() == 2:
            x = x.unsqueeze(0)
            # print(x, adj, masks)
        masks = masks.unsqueeze(2).repeat(1, 1, x.size(2))
        if self.pooling == 'max':
            x[masks == 0] = -99999.99999
            x = x.max(1)[0]
        elif self.pooling == 'add':
            x = x.sum(1)
        else:
            print('Not Implemented')

        return x


class MaskedMean(nn.Module):
    def __init__(self):
        super(MaskedMean, self).__init__()

    def forward(self, X, m):
        if isinstance(m, torch.Tensor):
            X = X * m.unsqueeze(2)

        return X.mean(1)


class MaskedMax(nn.Module):
    def __init__(self):
        super(MaskedMax, self).__init__()

    def forward(self, X, m):
        if isinstance(m, torch.Tensor):
            X = X * m.unsqueeze(2)

        return torch.max(X, 1)[0]


class MaskedSum(nn.Module):
    def __init__(self):
        super(MaskedSum, self).__init__()

    def forward(self, X, m):
        if isinstance(m, torch.Tensor):
            X = X * m.unsqueeze(2)

        return X.sum(1)


class MaskedScaledAverage(nn.Module):
    def __init__(self):
        super(MaskedScaledAverage, self).__init__()

    def forward(self, X, m):
        if isinstance(m, torch.Tensor):
            X = X * m.unsqueeze(2)

        return X.sum(1) / (m.sum(1) ** 0.5).unsqueeze(1)


class Decoder(nn.Module):
    def __init__(self, analysis_mode):
        super(Decoder, self).__init__()
        self.output_representations = []
        self.query_representations = []
        self.kvpair_representations = []
        self.attention_weights = []

        if analysis_mode: self.register_forward_hook(store_decoder_representations)

    def show(self):
        print("Number of Saved Numpy Arrays: ", len(self.representations))
        for i, representation in enumerate(self.representations):
            print(f"Shape of {i}th Numpy Array: ", representation.shape)

        return self.representations

    def flush(self):
        del self.representations
        self.representations = []

    def release_qk(self):

        return None

    def forward(self, **kwargs):

        return kwargs['X'], kwargs['X'], kwargs['residue_features'], None


class DecoderPMA_Residue(Decoder):
    def __init__(self, h: int, num_heads: int, num_seeds: int, attn_option: str, analysis_mode: bool):
        super(DecoderPMA_Residue, self).__init__(analysis_mode)
        # Aggregate the Residues into Residue Regions
        pma_args = (h, num_seeds, num_heads, RFF(h), attn_option, False, analysis_mode, False)
        self.decoder = PoolingMultiheadAttention(*pma_args)
        # Model Region-Region Interaction through Set Attention
        sab_depth = 0 if num_seeds < 4 else int((num_seeds // 2) ** 0.5)
        sab_args = (h, num_heads, RFF(h), attn_option, False, analysis_mode, True)
        self.pairwise = nn.ModuleList([SetAttentionBlock(*sab_args) for _ in range(sab_depth)])
        # Concat, then reduce into h-dimensional Set Representation
        self.aggregate = nn.Linear(h * num_seeds, h)

        self.apply(initialization)

    def forward(self, **kwargs):
        residue_features = kwargs['residue_features']
        residue_masks = kwargs['residue_masks']

        output, attention = self.decoder(residue_features, residue_masks)
        for sab in self.pairwise: output, _ = sab(output)
        b, n, d = output.shape
        output = self.aggregate(output.view(b, n * d))

        return output, None, residue_features, attention


class AffinityMLP(nn.Module):
    def __init__(self, h: int):
        super(AffinityMLP, self).__init__()
        self.mlp = nn.Sequential(nn.Linear(h, h), nn.Dropout(0.1), nn.LeakyReLU(), nn.Linear(h, 1))

        self.apply(initialization)

    def forward(self, **kwargs):
        '''
            X:  batch size x 1 x H
        '''
        X = kwargs['binding_complex']
        X = X.squeeze(1) if X.dim() == 3 else X
        yhat = self.mlp(X)

        return yhat


class InteractionMLP(nn.Module):
    def __init__(self, h: int):
        super(InteractionMLP, self).__init__()
        self.mlp = nn.Sequential(nn.Linear(h, h), nn.Dropout(0.1), nn.LeakyReLU(), nn.Linear(h, 1), nn.Sigmoid())

        self.apply(initialization)

    def forward(self, **kwargs):
        '''
            X:  batch size x 1 x H
        '''
        X = kwargs['binding_complex']
        X = X.squeeze(1) if X.dim() == 3 else X
        yhat = self.mlp(X)

        return yhat


class LigelemEncoder(nn.Module):
    def __init__(self):
        super(LigelemEncoder, self).__init__()
        self.representations = []

    def show(self):
        print("Number of Saved Numpy Arrays: ", len(self.representations))
        for i, representation in enumerate(self.representations):
            print(f"Shape of {i}th Numpy Array: ", representation.shape)

        return self.representations

    def flush(self):
        del self.representations
        self.representations = []


class EcfpConverter(LigelemEncoder):
    def __init__(self, h: int, sab_depth: int, ecfp_dim: int, analysis_mode: bool):
        super(EcfpConverter, self).__init__()
        K = 4  # number of attention heads
        self.ecfp_embeddings = nn.Embedding(ecfp_dim + 1, h, padding_idx=ecfp_dim)
        self.encoder = nn.ModuleList([])
        sab_args = (h, K, RFF(h), 'general_dot', False, analysis_mode, True)
        self.encoder = nn.ModuleList([SetAttentionBlock(*sab_args) for _ in range(sab_depth)])

        self.representations = []
        if analysis_mode: self.register_forward_hook(store_elemwise_representations)
        self.apply(initialization)

    def forward(self, **kwargs):
        '''
            X : (b x d)
        '''
        ecfp_words = kwargs['ecfp_words']
        ecfp_masks = kwargs['ecfp_masks']
        ecfp_words = self.ecfp_embeddings(ecfp_words)

        for sab in self.encoder:
            ecfp_words, _ = sab(ecfp_words, ecfp_masks)

        return [ecfp_words, ecfp_masks]


class ResidueAddOn(nn.Module):
    def __init__(self):
        super(ResidueAddOn, self).__init__()

        self.representations = []

    def show(self):
        print("Number of Saved Numpy Arrays: ", len(self.representations))
        for i, representation in enumerate(self.representations):
            print(f"Shape of {i}th Numpy Array: ", representation.shape)

        return self.representations

    def flush(self):
        del self.representations
        self.representations = []

    def forward(self, **kwargs):
        X, Xm = kwargs['X'], kwargs['Xm']

        return X, Xm


class ARKMAB(ResidueAddOn):
    def __init__(self, h: int, num_heads: int, attn_option: str, analysis_mode: bool):
        super(ARKMAB, self).__init__()
        pmx_args = (h, num_heads, RFF(h), attn_option, False, analysis_mode, False)
        self.pmx = PoolingMultiheadCrossAttention(*pmx_args)
        self.inactive = nn.Parameter(torch.randn(1, 1, h))
        self.fillmask = nn.Parameter(torch.ones(1, 1), requires_grad=False)

        self.representations = []
        if analysis_mode: pass
        self.apply(initialization)

    def forward(self, **kwargs):
        '''
            X:  batch size x residues x H
            Xm: batch size x residues x H
            Y:  batch size x ecfpsubs x H
            Ym: batch size x ecfpsubs x H
        '''
        X, Xm = kwargs['residue_features'], kwargs['residue_masks']
        Y, Ym = kwargs['ligelem_features'], kwargs['ligelem_masks']
        pseudo_substructure = self.inactive.repeat(X.size(0), 1, 1)
        pseudo_masks = self.fillmask.repeat(X.size(0), 1)

        Y = torch.cat([Y, pseudo_substructure], 1)
        Ym = torch.cat([Ym, pseudo_masks], 1)

        X, attention = self.pmx(Y=Y, Ym=Ym, X=X, Xm=Xm)

        return X, Xm, attention


class ResidueEncoder(nn.Module):
    def __init__(self):
        super(ResidueEncoder, self).__init__()
        self.representations = []

    def show(self):
        print("Number of Saved Numpy Arrays: ", len(self.representations))
        for i, representation in enumerate(self.representations):
            print(f"Shape of {i}th Numpy Array: ", representation.shape)

        return self.representations

    def flush(self):
        del self.representations
        self.representations = []


class AminoAcidSeqCNN(ResidueEncoder):
    def __init__(self, h: int, d: float, cnn_depth: int, kernel_size: int, analysis_mode: bool):
        super(AminoAcidSeqCNN, self).__init__()
        self.encoder = nn.ModuleList([nn.Sequential(nn.Linear(21, h),  # Warning
                                                    nn.Dropout(d),
                                                    nn.LeakyReLU(),
                                                    nn.Linear(h, h))])
        for _ in range(cnn_depth):
            self.encoder.append(nn.Conv1d(h, h, kernel_size, 1, (kernel_size - 1) // 2))

        self.representations = []
        if analysis_mode: self.register_forward_hook(store_representations)
        self.apply(initialization)

    def forward(self, **kwargs):
        X = kwargs['aaseqs']
        for i, module in enumerate(self.encoder):
            if i == 1: X = X.transpose(1, 2)
            X = module(X)
        X = X.transpose(1, 2)

        return X


class FastaESM(ResidueEncoder):
    def __init__(self, h: int, esm_model: str, esm_freeze: bool, analysis_mode: bool):
        super(FastaESM, self).__init__()
        self.esm_version = 2 if 'esm2' in esm_model else 1
        if esm_model == 'esm1b_t33_650M_UR505':
            self.esm, alphabet = esm.pretrained.esm1b_t33_650M_UR50S()
            self.layer_idx, self.emb_dim = 33, 1024
        elif esm_model == 'esm1_t12_85M_UR505':
            self.esm, alphabet = esm.pretrained.esm1_t12_85M_UR50S()
            self.layer_idx, self.emb_dim = 12, 768
        elif esm_model == 'esm2_t6_8M_UR50D':
            self.esm, alphabet = esm.pretrained.esm2_t6_8M_UR50D()
            self.layer_idx, self.emb_dim = 6, 320
        elif esm_model == 'esm2_t12_35M_UR50D':
            self.esm, alphabet = esm.pretrained.esm2_t12_35M_UR50D()
            self.layer_idx, self.emb_dim = 12, 480
        elif esm_model == 'esm2_t30_150M_UR50D':
            self.esm, alphabet = esm.pretrained.esm2_t30_150M_UR50D()
            self.layer_idx, self.emb_dim = 30, 640
        else:
            raise
        self.batch_converter = alphabet.get_batch_converter()
        if esm_freeze == 'True':
            for p in self.esm.parameters():
                p.requires_grad = False
        assert h == self.emb_dim, f"The hidden dimension should be set to {self.emb_dim}, not {h}"
        self.representations = []
        if analysis_mode: self.register_forward_hook(store_elemwise_representations)

    def esm1_pooling(self, embeddings, masks):

        return embeddings[:, 1:, :].sum(1) / masks[:, 1:].sum(1).view(-1, 1)

    def esm2_pooling(self, embeddings, masks):

        return embeddings[:, 1:-1, :].sum(1) / masks[:, 1:-1].sum(1).view(-1, 1)

    def forward(self, **kwargs):
        fastas = kwargs['fastas']
        _, _, tokenized = self.batch_converter(fastas)
        tokenized = tokenized.cuda()
        if self.esm_version == 2:
            masks = torch.where(tokenized > 1, 1, 0).float()
        else:
            masks = torch.where((tokenized > 1) & (tokenized != 32), 1, 0).float()

        embeddings = self.esm(tokenized, repr_layers=[self.layer_idx], return_contacts=True)
        logits = embeddings["logits"].sum()
        contacts = embeddings["contacts"].sum()
        attentions = embeddings["attentions"].sum()
        embeddings = embeddings["representations"][self.layer_idx]

        assert masks.size(0) == embeddings.size(
            0), f"Batch sizes of masks {masks.size(0)} and {embeddings.size(0)} do not match."
        assert masks.size(1) == embeddings.size(
            1), f"Lengths of masks {masks.size(1)} and {embeddings.size(1)} do not match."

        if self.esm_version == 2:
            return [embeddings[:, 1:-1, :], masks[:, 1:-1], logits + contacts + attentions,
                    self.esm2_pooling(embeddings, masks)]
        else:
            return [embeddings[:, 1:, :], masks[:, 1:], logits + contacts + attentions,
                    self.esm1_pooling(embeddings, masks)]


class DotProduct(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, queries, keys):
        return torch.bmm(queries, keys.transpose(1, 2))


class ScaledDotProduct(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, queries, keys):
        return torch.bmm(queries, keys.transpose(1, 2)) / (queries.size(2) ** 0.5)


class GeneralDotProduct(nn.Module):
    def __init__(self, hidden_dim):
        super().__init__()
        self.W = nn.Parameter(torch.randn(hidden_dim, hidden_dim))
        torch.nn.init.orthogonal_(self.W)

    def forward(self, queries, keys):
        return torch.bmm(queries @ self.W, keys.transpose(1, 2))


class ConcatDotProduct(nn.Module):
    def __init__(self, hidden_dim):
        super().__init__()
        raise

    def forward(self, queries, keys):
        return


class Additive(nn.Module):
    def __init__(self, hidden_dim):
        super().__init__()
        self.U = nn.Parameter(torch.randn(hidden_dim, hidden_dim))
        self.T = nn.Parameter(torch.randn(hidden_dim, hidden_dim))
        self.b = nn.Parameter(torch.rand(hidden_dim).uniform_(-0.1, 0.1))
        self.W = nn.Sequential(nn.Tanh(), nn.Linear(hidden_dim, 1))
        torch.nn.init.orthogonal_(self.U)
        torch.nn.init.orthogonal_(self.T)

    def forward(self, queries, keys):
        return self.W(queries.unsqueeze(1) @ self.U + keys.unsqueeze(2) @ self.T + self.b).squeeze(-1).transpose(1, 2)


class Attention(nn.Module):
    def __init__(self, similarity, hidden_dim=1024, store_qk=False):
        super().__init__()
        self.softmax = nn.Softmax(dim=2)
        self.attention_maps = []
        self.store_qk = store_qk
        self.query_vectors, self.key_vectors = None, None

        assert similarity in ['dot', 'scaled_dot', 'general_dot', 'concat_dot', 'additive']
        if similarity == 'dot':
            self.similarity = DotProduct()
        elif similarity == 'scaled_dot':
            self.similarity = ScaledDotProduct()
        elif similarity == 'general_dot':
            self.similarity = GeneralDotProduct(hidden_dim)
        elif similarity == 'concat_dot':
            self.similarity = ConcatDotProduct(hidden_dim)
        elif similarity == 'additive':
            self.similarity = Additive(hidden_dim)
        else:
            raise

    def release_qk(self):
        Q, K = self.query_vectors, self.key_vectors
        self.query_vectors, self.key_vectors = None, None
        torch.cuda.empty_cache()

        return Q, K

    def forward(self, queries, keys, qmasks=None, kmasks=None):
        if self.store_qk:
            self.query_vectors = queries
            self.key_vectors = keys

        if torch.is_tensor(qmasks) and not torch.is_tensor(kmasks):
            dim0, dim1 = qmasks.size(0), keys.size(1)
            kmasks = torch.ones(dim0, dim1).cuda()

        elif not torch.is_tensor(qmasks) and torch.is_tensor(kmasks):
            dim0, dim1 = kmasks.size(0), queries.size(1)
            qmasks = torch.ones(dim0, dim1).cuda()
        else:
            pass

        attention = self.similarity(queries, keys)
        if torch.is_tensor(qmasks) and torch.is_tensor(kmasks):
            qmasks = qmasks.repeat(queries.size(0) // qmasks.size(0), 1).unsqueeze(2)
            kmasks = kmasks.repeat(keys.size(0) // kmasks.size(0), 1).unsqueeze(2)
            attnmasks = torch.bmm(qmasks, kmasks.transpose(1, 2))
            attention = torch.clip(attention, min=-10, max=10)
            attention = attention.exp()
            attention = attention * attnmasks
            attention = attention / (attention.sum(2).unsqueeze(2) + 1e-5)
        else:
            attention = self.softmax(attention)

        return attention


@torch.no_grad()
def save_attention_maps(self, input, output):
    self.attention_maps.append(output.data.detach().cpu().numpy())


class MultiheadAttention(nn.Module):
    def __init__(self, d, h, sim='dot', analysis=False, store_qk=False):
        super().__init__()
        assert d % h == 0, f"{d} dimension, {h} heads"
        self.h = h
        p = d // h

        self.project_queries = nn.Linear(d, d)
        self.project_keys = nn.Linear(d, d)
        self.project_values = nn.Linear(d, d)
        self.concatenation = nn.Linear(d, d)
        self.attention = Attention(sim, p, store_qk)

        if analysis:
            self.attention.register_forward_hook(save_attention_maps)

    def release_qk(self):
        Q, K = self.attention.release_qk()

        Qb = Q.size(0) // self.h
        Qn, Qd = Q.size(1), Q.size(2)

        Kb = K.size(0) // self.h
        Kn, Kd = K.size(1), K.size(2)

        Q = Q.view(self.h, Qb, Qn, Qd)
        K = K.view(self.h, Kb, Kn, Kd)

        Q = Q.permute(1, 2, 0, 3).contiguous().view(Qb, Qn, Qd * self.h)
        K = K.permute(1, 2, 0, 3).contiguous().view(Kb, Kn, Kd * self.h)

        return Q, K

    def forward(self, queries, keys, values, qmasks=None, kmasks=None):
        h = self.h
        b, n, d = queries.size()
        _, m, _ = keys.size()
        p = d // h

        queries = self.project_queries(queries)  # shape [b, n, d]
        keys = self.project_keys(keys)  # shape [b, m, d]
        values = self.project_values(values)  # shape [b, m, d]

        queries = queries.view(b, n, h, p)
        keys = keys.view(b, m, h, p)
        values = values.view(b, m, h, p)

        queries = queries.permute(2, 0, 1, 3).contiguous().view(h * b, n, p)
        keys = keys.permute(2, 0, 1, 3).contiguous().view(h * b, m, p)
        values = values.permute(2, 0, 1, 3).contiguous().view(h * b, m, p)

        attn_w = self.attention(queries, keys, qmasks, kmasks)  # shape [h * b, n, p]
        output = torch.bmm(attn_w, values)
        output = output.view(h, b, n, p)
        output = output.permute(1, 2, 0, 3).contiguous().view(b, n, d)
        output = self.concatenation(output)  # shape [b, n, d]

        return output, attn_w


class MultiheadAttentionExpanded(nn.Module):
    def __init__(self, d, h, sim='dot', analysis=False):
        super().__init__()
        self.project_queries = nn.ModuleList([nn.Linear(d, d) for _ in range(h)])
        self.project_keys = nn.ModuleList([nn.Linear(d, d) for _ in range(h)])
        self.project_values = nn.ModuleList([nn.Linear(d, d) for _ in range(h)])
        self.concatenation = nn.Linear(h * d, d)
        self.attention = Attention(sim, d)

        if analysis:
            self.attention.register_forward_hook(save_attention_maps)

    def forward(self, queries, keys, values, qmasks=None, kmasks=None):
        output = []
        for Wq, Wk, Wv in zip(self.project_queries, self.project_keys, self.project_values):
            Pq, Pk, Pv = Wq(queries), Wk(keys), Wv(values)
            output.append(torch.bmm(self.attention(Pq, Pk, qmasks, kmasks), Pv))

        output = self.concatenation(torch.cat(output, 1))

        return output


class EmptyModule(nn.Module):
    def __init__(self, args):
        super().__init__()

    def forward(self, x):
        return 0.


class RFF(nn.Module):
    def __init__(self, h):
        super().__init__()
        self.rff = nn.Sequential(nn.Linear(h, h), nn.ReLU(), nn.Linear(h, h), nn.ReLU(), nn.Linear(h, h), nn.ReLU())

    def forward(self, x):
        return self.rff(x)


class MultiheadAttentionBlock(nn.Module):
    def __init__(self, d, h, rff, similarity='dot', full_head=False, analysis=False, store_qk=False):
        super().__init__()
        self.multihead = MultiheadAttention(d, h, similarity, analysis,
                                            store_qk) if not full_head else MultiheadAttentionExpanded(d, h, similarity,
                                                                                                       analysis)
        self.layer_norm1 = nn.LayerNorm(d)
        self.layer_norm2 = nn.LayerNorm(d)
        self.rff = rff

    def release_qk(self):
        Q, K = self.multihead.release_qk()

        return Q, K

    def forward(self, x, y, xm=None, ym=None, layer_norm=True):
        h, a = self.multihead(x, y, y, xm, ym)
        if layer_norm:
            h = self.layer_norm1(x + h)
            return self.layer_norm2(h + self.rff(h)), a
        else:
            h = x + h
            return h + self.rff(h), a


class SetAttentionBlock(nn.Module):
    def __init__(self, d, h, rff, similarity='dot', full_head=False, analysis=False, store_qk=False):
        super().__init__()
        self.mab = MultiheadAttentionBlock(d, h, rff, similarity, full_head, analysis, store_qk)

    def release_qk(self):
        Q, K = self.mab.release_qk()

        return Q, K

    def forward(self, x, m=None, ln=True):
        return self.mab(x, x, m, m, ln)


class InducedSetAttentionBlock(nn.Module):
    def __init__(self, d, m, h, rff1, rff2, similarity='dot', full_head=False, analysis=False, store_qk=False):
        super().__init__()
        self.mab1 = MultiheadAttentionBlock(d, h, rff1, similarity, full_head, analysis, store_qk)
        self.mab2 = MultiheadAttentionBlock(d, h, rff2, similarity, full_head, analysis, store_qk)
        self.inducing_points = nn.Parameter(torch.randn(1, m, d))

    def release_qk(self):
        raise NotImplemented

    def forward(self, x, m=None, ln=True):
        b = x.size(0)
        p = self.inducing_points
        p = p.repeat([b, 1, 1])  # shape [b, m, d]
        h = self.mab1(p, x, None, m, ln)  # shape [b, m, d]

        return self.mab2(x, h, m, None, ln)


class PoolingMultiheadAttention(nn.Module):
    def __init__(self, d, k, h, rff, similarity='dot', full_head=False, analysis=False, store_qk=False):
        super().__init__()
        self.mab = MultiheadAttentionBlock(d, h, rff, similarity, full_head, analysis, store_qk)
        self.seed_vectors = nn.Parameter(torch.randn(1, k, d))
        torch.nn.init.xavier_uniform_(self.seed_vectors)

    def release_qk(self):
        Q, K = self.mab.release_qk()

        return Q, K

    def forward(self, z, m=None, ln=True):
        b = z.size(0)
        s = self.seed_vectors
        s = s.repeat([b, 1, 1])  # random seed vector: shape [b, k, d]

        return self.mab(s, z, None, m, ln)


class PoolingMultiheadCrossAttention(nn.Module):
    def __init__(self, d, h, rff, similarity='dot', full_head=False, analysis=False, store_qk=False):
        super().__init__()
        self.mab = MultiheadAttentionBlock(d, h, rff, similarity, full_head, analysis, store_qk)

    def release_qk(self):
        Q, K = self.mab.release_qk()

        return Q, K

    def forward(self, X, Y, Xm=None, Ym=None, ln=True):
        return self.mab(X, Y, Xm, Ym, ln)