File size: 8,803 Bytes
c0ec7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import copy
import math

import torch
from torch import nn


class Transformer(nn.Module):
    def __init__(self,
                 input_dim,
                 emb_size,
                 max_position_size,
                 dropout,
                 n_layer,
                 intermediate_size,
                 num_attention_heads,
                 attention_probs_dropout,
                 hidden_dropout,
                 ):
        super().__init__()
        self.emb = Embeddings(input_dim,
                              emb_size,
                              max_position_size,
                              dropout)
        self.encoder = MultiLayeredEncoder(n_layer,
                                           emb_size,
                                           intermediate_size,
                                           num_attention_heads,
                                           attention_probs_dropout,
                                           hidden_dropout)

    def forward(self, v):
        e = v[0].long()
        e_mask = v[1].long()
        ex_e_mask = e_mask.unsqueeze(1).unsqueeze(2)
        ex_e_mask = (1.0 - ex_e_mask) * -10000.0

        emb = self.emb(e)
        encoded_layers = self.encoder(emb.float(), ex_e_mask.float())
        return encoded_layers[:, 0]


class LayerNorm(nn.Module):
    def __init__(self, hidden_size, variance_epsilon=1e-12):
        super(LayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.ones(hidden_size))
        self.beta = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = variance_epsilon

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.gamma * x + self.beta


class Embeddings(nn.Module):
    """Construct the embeddings from protein/target, position embeddings.
    """

    def __init__(self, vocab_size, hidden_size, max_position_size, dropout_rate):
        super(Embeddings, self).__init__()
        self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
        self.position_embeddings = nn.Embedding(max_position_size, hidden_size)

        self.LayerNorm = LayerNorm(hidden_size)
        self.dropout = nn.Dropout(dropout_rate)

    def forward(self, input_ids):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

        embeddings = words_embeddings + position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class SelfAttention(nn.Module):
    def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
        super(SelfAttention, self).__init__()
        if hidden_size % num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (hidden_size, num_attention_heads))
        self.num_attention_heads = num_attention_heads
        self.attention_head_size = int(hidden_size / num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(hidden_size, self.all_head_size)
        self.key = nn.Linear(hidden_size, self.all_head_size)
        self.value = nn.Linear(hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        return context_layer


class SelfOutput(nn.Module):
    def __init__(self, hidden_size, hidden_dropout_prob):
        super(SelfOutput, self).__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.LayerNorm = LayerNorm(hidden_size)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states
    

class Attention(nn.Module):
    def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
        super(Attention, self).__init__()
        self.self = SelfAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob)
        self.output = SelfOutput(hidden_size, hidden_dropout_prob)

    def forward(self, input_tensor, attention_mask):
        self_output = self.self(input_tensor, attention_mask)
        attention_output = self.output(self_output, input_tensor)
        return attention_output


class Intermediate(nn.Module):
    def __init__(self, hidden_size, intermediate_size):
        super(Intermediate, self).__init__()
        self.dense = nn.Linear(hidden_size, intermediate_size)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = nn.functional.relu(hidden_states)
        return hidden_states


class Output(nn.Module):
    def __init__(self, intermediate_size, hidden_size, hidden_dropout_prob):
        super(Output, self).__init__()
        self.dense = nn.Linear(intermediate_size, hidden_size)
        self.LayerNorm = LayerNorm(hidden_size)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class Encoder(nn.Module):
    def __init__(self, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob,
                 hidden_dropout_prob):
        super(Encoder, self).__init__()
        self.attention = Attention(hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob)
        self.intermediate = Intermediate(hidden_size, intermediate_size)
        self.output = Output(intermediate_size, hidden_size, hidden_dropout_prob)

    def forward(self, hidden_states, attention_mask):
        attention_output = self.attention(hidden_states, attention_mask)
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class MultiLayeredEncoder(nn.Module):
    def __init__(self, n_layer, hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob,
                 hidden_dropout_prob):
        super(MultiLayeredEncoder, self).__init__()
        layer = Encoder(hidden_size, intermediate_size, num_attention_heads, attention_probs_dropout_prob,
                        hidden_dropout_prob)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(n_layer)])

    def forward(self, hidden_states, attention_mask):
        for layer_module in self.layer:
            hidden_states = layer_module(hidden_states, attention_mask)
        return hidden_states