File size: 5,968 Bytes
22761bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn

PT_FEATURE_SIZE = 40


class DeepDTAF(nn.Module):
    def __init__(self, smi_charset_len):
        super().__init__()

        smi_embed_size = 128
        seq_embed_size = 128

        seq_oc = 128
        pkt_oc = 128
        smi_oc = 128

        self.smi_embed = nn.Embedding(smi_charset_len, smi_embed_size)

        self.seq_embed = nn.Linear(PT_FEATURE_SIZE, seq_embed_size)  # (N, *, H_{in}) -> (N, *, H_{out})

        conv_seq = []
        ic = seq_embed_size
        for oc in [32, 64, 64, seq_oc]:
            conv_seq.append(DilatedParllelResidualBlockA(ic, oc))
            ic = oc
        conv_seq.append(nn.AdaptiveMaxPool1d(1))  # (N, oc)
        conv_seq.append(Squeeze())
        self.conv_seq = nn.Sequential(*conv_seq)

        # (N, H=32, L)
        conv_pkt = []
        ic = seq_embed_size
        for oc in [32, 64, pkt_oc]:
            conv_pkt.append(nn.Conv1d(ic, oc, 3))  # (N,C,L)
            conv_pkt.append(nn.BatchNorm1d(oc))
            conv_pkt.append(nn.PReLU())
            ic = oc
        conv_pkt.append(nn.AdaptiveMaxPool1d(1))
        conv_pkt.append(Squeeze())
        self.conv_pkt = nn.Sequential(*conv_pkt)  # (N,oc)

        conv_smi = []
        ic = smi_embed_size
        for oc in [32, 64, smi_oc]:
            conv_smi.append(DilatedParllelResidualBlockB(ic, oc))
            ic = oc
        conv_smi.append(nn.AdaptiveMaxPool1d(1))
        conv_smi.append(Squeeze())
        self.conv_smi = nn.Sequential(*conv_smi)  # (N,128)

        self.cat_dropout = nn.Dropout(0.2)

        self.classifier = nn.Sequential(
            nn.Linear(seq_oc + pkt_oc + smi_oc, 128),
            nn.Dropout(0.5),
            nn.PReLU(),
            nn.Linear(128, 64),
            nn.Dropout(0.5),
            nn.PReLU(),
            # nn.Linear(64, 1),
            # nn.PReLU()
        )

    def forward(self, seq, pkt, smi):
        # assert seq.shape == (N,L,43)
        seq_embed = self.seq_embed(seq)  # (N,L,32)
        seq_embed = torch.transpose(seq_embed, 1, 2)  # (N,32,L)
        seq_conv = self.conv_seq(seq_embed)  # (N,128)

        # assert pkt.shape == (N,L,43)
        pkt_embed = self.seq_embed(pkt)  # (N,L,32)
        pkt_embed = torch.transpose(pkt_embed, 1, 2)
        pkt_conv = self.conv_pkt(pkt_embed)  # (N,128)

        # assert smi.shape == (N, L)
        smi_embed = self.smi_embed(smi)  # (N,L,32)
        smi_embed = torch.transpose(smi_embed, 1, 2)
        smi_conv = self.conv_smi(smi_embed)  # (N,128)

        cat = torch.cat([seq_conv, pkt_conv, smi_conv], dim=1)  # (N,128*3)
        cat = self.cat_dropout(cat)

        output = self.classifier(cat)
        return output


class Squeeze(nn.Module):
    def forward(self, input: torch.Tensor):
        return input.squeeze()


class CDilated(nn.Module):
    def __init__(self, nIn, nOut, kSize, stride=1, d=1):
        super().__init__()
        padding = int((kSize - 1) / 2) * d
        self.conv = nn.Conv1d(nIn, nOut, kSize, stride=stride, padding=padding, bias=False, dilation=d)

    def forward(self, input):
        output = self.conv(input)
        return output


class DilatedParllelResidualBlockA(nn.Module):
    def __init__(self, nIn, nOut, add=True):
        super().__init__()
        n = int(nOut / 5)
        n1 = nOut - 4 * n
        self.c1 = nn.Conv1d(nIn, n, 1, padding=0)
        self.br1 = nn.Sequential(nn.BatchNorm1d(n), nn.PReLU())
        self.d1 = CDilated(n, n1, 3, 1, 1)  # dilation rate of 2^0
        self.d2 = CDilated(n, n, 3, 1, 2)  # dilation rate of 2^1
        self.d4 = CDilated(n, n, 3, 1, 4)  # dilation rate of 2^2
        self.d8 = CDilated(n, n, 3, 1, 8)  # dilation rate of 2^3
        self.d16 = CDilated(n, n, 3, 1, 16)  # dilation rate of 2^4
        self.br2 = nn.Sequential(nn.BatchNorm1d(nOut), nn.PReLU())

        if nIn != nOut:
            #             print(f'{nIn}-{nOut}: add=False')
            add = False
        self.add = add

    def forward(self, input):
        # reduce
        output1 = self.c1(input)
        output1 = self.br1(output1)
        # split and transform
        d1 = self.d1(output1)
        d2 = self.d2(output1)
        d4 = self.d4(output1)
        d8 = self.d8(output1)
        d16 = self.d16(output1)

        # heirarchical fusion for de-gridding
        add1 = d2
        add2 = add1 + d4
        add3 = add2 + d8
        add4 = add3 + d16

        # merge
        combine = torch.cat([d1, add1, add2, add3, add4], 1)

        # if residual version
        if self.add:
            combine = input + combine
        output = self.br2(combine)
        return output


class DilatedParllelResidualBlockB(nn.Module):
    def __init__(self, nIn, nOut, add=True):
        super().__init__()
        n = int(nOut / 4)
        n1 = nOut - 3 * n
        self.c1 = nn.Conv1d(nIn, n, 1, padding=0)
        self.br1 = nn.Sequential(nn.BatchNorm1d(n), nn.PReLU())
        self.d1 = CDilated(n, n1, 3, 1, 1)  # dilation rate of 2^0
        self.d2 = CDilated(n, n, 3, 1, 2)  # dilation rate of 2^1
        self.d4 = CDilated(n, n, 3, 1, 4)  # dilation rate of 2^2
        self.d8 = CDilated(n, n, 3, 1, 8)  # dilation rate of 2^3
        self.br2 = nn.Sequential(nn.BatchNorm1d(nOut), nn.PReLU())

        if nIn != nOut:
            #             print(f'{nIn}-{nOut}: add=False')
            add = False
        self.add = add

    def forward(self, input):
        # reduce
        output1 = self.c1(input)
        output1 = self.br1(output1)
        # split and transform
        d1 = self.d1(output1)
        d2 = self.d2(output1)
        d4 = self.d4(output1)
        d8 = self.d8(output1)

        # heirarchical fusion for de-gridding
        add1 = d2
        add2 = add1 + d4
        add3 = add2 + d8

        # merge
        combine = torch.cat([d1, add1, add2, add3], 1)

        # if residual version
        if self.add:
            combine = input + combine
        output = self.br2(combine)
        return output