Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from importlib import resources | |
import numpy as np | |
import pandas as pd | |
from subword_nmt.apply_bpe import BPE | |
import codecs | |
vocab_path = resources.files('deepscreen').parent.joinpath('resources/vocabs/ESPF/protein_codes_uniprot.txt') | |
bpe_codes_protein = codecs.open(vocab_path) | |
protein_bpe = BPE(bpe_codes_protein, merges=-1, separator='') | |
sub_csv_path = resources.files('deepscreen').parent.joinpath('resources/vocabs/ESPF/subword_units_map_uniprot.csv') | |
sub_csv = pd.read_csv(sub_csv_path) | |
idx2word_protein = sub_csv['index'].values | |
words2idx_protein = dict(zip(idx2word_protein, range(0, len(idx2word_protein)))) | |
vocab_path = resources.files('deepscreen').parent.joinpath('resources/vocabs/ESPF/drug_codes_chembl.txt') | |
bpe_codes_drug = codecs.open(vocab_path) | |
drug_bpe = BPE(bpe_codes_drug, merges=-1, separator='') | |
sub_csv_path = resources.files('deepscreen').parent.joinpath('resources/vocabs/ESPF/subword_units_map_chembl.csv') | |
sub_csv = pd.read_csv(sub_csv_path) | |
idx2word_drug = sub_csv['index'].values | |
words2idx_drug = dict(zip(idx2word_drug, range(0, len(idx2word_drug)))) | |
def protein_to_embedding(x, max_sequence_length): | |
max_p = max_sequence_length | |
t1 = protein_bpe.process_line(x).split() # split | |
try: | |
i1 = np.asarray([words2idx_protein[i] for i in t1]) # index | |
except: | |
i1 = np.array([0]) | |
# print(x) | |
l = len(i1) | |
if l < max_p: | |
i = np.pad(i1, (0, max_p - l), 'constant', constant_values=0) | |
input_mask = ([1] * l) + ([0] * (max_p - l)) | |
else: | |
i = i1[:max_p] | |
input_mask = [1] * max_p | |
return i, np.asarray(input_mask) | |
def drug_to_embedding(x, max_sequence_length): | |
max_d = max_sequence_length | |
t1 = drug_bpe.process_line(x).split() # split | |
try: | |
i1 = np.asarray([words2idx_drug[i] for i in t1]) # index | |
except: | |
i1 = np.array([0]) | |
# print(x) | |
l = len(i1) | |
if l < max_d: | |
i = np.pad(i1, (0, max_d - l), 'constant', constant_values=0) | |
input_mask = ([1] * l) + ([0] * (max_d - l)) | |
else: | |
i = i1[:max_d] | |
input_mask = [1] * max_d | |
return i, np.asarray(input_mask) | |