libokj's picture
Upload 299 files
22761bf verified
raw
history blame
8.99 kB
from datetime import datetime
from pathlib import Path
import re
from typing import Any, Tuple
import pandas as pd
from hydra import TaskFunction
from hydra.core.hydra_config import HydraConfig
from hydra.core.override_parser.overrides_parser import OverridesParser
from hydra.core.utils import _save_config
from hydra.experimental.callbacks import Callback
from hydra.types import RunMode
from hydra._internal.config_loader_impl import ConfigLoaderImpl
from omegaconf import DictConfig, OmegaConf
from omegaconf.errors import MissingMandatoryValue
from deepscreen.utils import get_logger
log = get_logger(__name__)
class CSVExperimentSummary(Callback):
"""On multirun end, aggregate the results from each job's metrics.csv and save them in metrics_summary.csv."""
def __init__(self, filename: str = 'experiment_summary.csv', prefix: str | Tuple[str] = 'test/'):
self.filename = filename
self.prefix = prefix if isinstance(prefix, str) else tuple(prefix)
self.input_experiment_summary = None
self.time = {}
def on_multirun_start(self, config: DictConfig, **kwargs: Any) -> None:
if config.hydra.get('overrides') and config.hydra.overrides.get('task'):
for i, override in enumerate(config.hydra.overrides.task):
if override.startswith("ckpt_path"):
ckpt_path = override.split('=', 1)[1]
if ckpt_path.endswith(('.csv', '.txt', '.tsv', '.ssv', '.psv')):
config.hydra.overrides.task[i] = self.parse_ckpt_path_from_experiment_summary(ckpt_path)
log.info(ckpt_path)
break
if config.hydra.sweeper.get('params'):
if config.hydra.sweeper.params.get('ckpt_path'):
ckpt_path = str(config.hydra.sweeper.params.ckpt_path).strip("'\"")
if ckpt_path.endswith(('.csv', '.txt', '.tsv', '.ssv', '.psv')):
config.hydra.sweeper.params.ckpt_path = self.parse_ckpt_path_from_experiment_summary(ckpt_path)
log.info(ckpt_path)
def on_job_start(self, config: DictConfig, *, task_function: TaskFunction, **kwargs: Any) -> None:
self.time['start'] = datetime.now()
def on_job_end(self, config: DictConfig, job_return, **kwargs: Any) -> None:
# Skip callback if job is DDP subprocess
if "ddp" in job_return.hydra_cfg.hydra.job.name:
return
try:
self.time['end'] = datetime.now()
if config.hydra.mode == RunMode.RUN:
summary_file_path = Path(config.hydra.run.dir) / self.filename
elif config.hydra.mode == RunMode.MULTIRUN:
summary_file_path = Path(config.hydra.sweep.dir) / self.filename
else:
raise RuntimeError('Invalid Hydra `RunMode`.')
if summary_file_path.is_file():
summary_df = pd.read_csv(summary_file_path)
else:
summary_df = pd.DataFrame()
# Add job and override info
info_dict = {}
if job_return.overrides:
info_dict = dict(override.split('=', 1) for override in job_return.overrides)
info_dict['job_status'] = job_return.status.name
info_dict['job_id'] = job_return.hydra_cfg.hydra.job.id
info_dict['wall_time'] = str(self.time['end'] - self.time['start'])
# Add checkpoint info
if info_dict.get('ckpt_path'):
info_dict['ckpt_path'] = str(info_dict['ckpt_path']).strip("'\"")
ckpt_path = str(job_return.cfg.ckpt_path).strip("'\"")
if Path(ckpt_path).is_file():
if info_dict.get('ckpt_path') and ckpt_path != info_dict['ckpt_path']:
info_dict['previous_ckpt_path'] = info_dict['ckpt_path']
info_dict['ckpt_path'] = ckpt_path
if info_dict.get('ckpt_path'):
if (epoch := re.search(r'epoch_(\d+)', info_dict['ckpt_path'])) is not None:
info_dict['best_epoch'] = int(epoch.group(1))
# Add metrics info
metrics_df = pd.DataFrame()
if config.get('logger'):
output_dir = Path(config.hydra.runtime.output_dir).resolve()
csv_metrics_path = output_dir / config.logger.csv.name / "metrics.csv"
if csv_metrics_path.is_file():
log.info(f"Summarizing metrics with prefix `{self.prefix}` from {csv_metrics_path}")
metrics_df = pd.read_csv(csv_metrics_path)
# Find rows where 'test/' columns are not null and reset its epoch to the best model epoch
if info_dict.get('best_epoch'):
test_columns = [col for col in metrics_df.columns if col.startswith('test/')]
if test_columns:
mask = metrics_df[test_columns].notna().any(axis=1)
metrics_df.loc[mask, 'epoch'] = info_dict['best_epoch']
# Group and filter by best epoch
metrics_df = metrics_df.groupby('epoch').first()
metrics_df = metrics_df[metrics_df.index == info_dict['best_epoch']]
else:
log.info(f"No metrics.csv found in {output_dir}")
if metrics_df.empty:
metrics_df = pd.DataFrame(data=info_dict, index=[0])
else:
metrics_df = metrics_df.assign(**info_dict)
metrics_df.index = [0]
# Add extra info from the input batch experiment summary
if self.input_experiment_summary is not None and 'ckpt_path' in metrics_df.columns:
log.info(self.input_experiment_summary['ckpt_path'])
log.info(metrics_df['ckpt_path'])
orig_meta = self.input_experiment_summary[
self.input_experiment_summary['ckpt_path'] == metrics_df['ckpt_path'][0]
].head(1)
if not orig_meta.empty:
orig_meta.index = [0]
metrics_df = metrics_df.astype('O').combine_first(orig_meta.astype('O'))
summary_df = pd.concat([summary_df, metrics_df])
# Drop empty columns
summary_df.dropna(inplace=True, axis=1, how='all')
summary_df.to_csv(summary_file_path, index=False, mode='w')
log.info(f"Experiment summary saved to {summary_file_path}")
except Exception as e:
log.exception("Unable to save the experiment summary due to an error.", exc_info=e)
def parse_ckpt_path_from_experiment_summary(self, ckpt_path):
log.info(ckpt_path)
try:
self.input_experiment_summary = pd.read_csv(
ckpt_path, usecols=lambda col: not col.startswith(self.prefix)
)
self.input_experiment_summary['ckpt_path'] = self.input_experiment_summary['ckpt_path'].apply(
lambda x: x.strip("'\"")
)
ckpt_list = list(set(self.input_experiment_summary['ckpt_path']))
parsed_ckpt_path = ','.join([f"'{ckpt}'" for ckpt in ckpt_list])
return parsed_ckpt_path
except Exception as e:
log.exception(
f'Error in parsing checkpoint paths from experiment_summary file ({ckpt_path}).',
exc_info=e
)
def checkpoint_rerun_config(config: DictConfig):
hydra_cfg = HydraConfig.get()
if not Path(config.ckpt_path).is_file():
raise FileNotFoundError(f'Not a valid checkpoint file: {config.ckpt_path}')
if hydra_cfg.get('output_subdir'):
ckpt_cfg_path = Path(config.ckpt_path).parents[1] / hydra_cfg.output_subdir / 'config.yaml'
hydra_output = Path(hydra_cfg.runtime.output_dir) / hydra_cfg.output_subdir
if ckpt_cfg_path.is_file():
log.info(f"Found config file for the checkpoint at {str(ckpt_cfg_path)}; "
f"merging config overrides with checkpoint config...")
ckpt_cfg = OmegaConf.load(ckpt_cfg_path)
for key, value in ckpt_cfg.items():
OmegaConf.update(config, key, value, merge=False, force_add=True)
# Recompose merged config with overrides
if hydra_cfg.overrides.get('task'):
parser = OverridesParser.create()
parsed_overrides = parser.parse_overrides(overrides=hydra_cfg.overrides.task)
filtered_overrides = []
for override in parsed_overrides:
if override.is_force_add() or override.key_or_group.split('.')[0] in config:
filtered_overrides.append(override)
ConfigLoaderImpl._apply_overrides_to_config(filtered_overrides, config)
_save_config(config, "config.yaml", hydra_output)
return config