libokj's picture
Upload 110 files
c0ec7e6
raw
history blame
2.35 kB
from torch import nn, cat
class MLP1(nn.Sequential):
def __init__(self,
input_channels,
hidden_channels: list[int],
out_channels: int,
activation: type[nn.Module] = nn.ReLU,
dropout: float = 0.0):
layers = []
num_layers = len(hidden_channels) + 1
dims = [input_channels] + hidden_channels + [out_channels]
for i in range(num_layers):
if i != (num_layers - 1):
layers.append(nn.Linear(dims[i], dims[i+1]))
layers.append(nn.Dropout(dropout))
layers.append(activation())
else:
layers.append(nn.Linear(dims[i], dims[i+1]))
super().__init__(*layers)
class MLP2(nn.Sequential):
def __init__(self,
input_channels,
hidden_channels: list[int],
out_channels: int,
dropout: float = 0.0):
super().__init__()
self.dropout = nn.Dropout(dropout)
num_layers = len(hidden_channels) + 1
dims = [input_channels] + hidden_channels + [out_channels]
self.layers = nn.ModuleList([nn.Linear(dims[i], dims[i+1]) for i in range(num_layers)])
def forward(self, x):
for i, layer in enumerate(self.layers):
if i == (len(self.layers) - 1):
x = layer(x)
else:
x = nn.functional.relu(self.dropout(layer(x)))
return x
class LazyMLP(nn.Sequential):
def __init__(
self,
out_channels: int,
hidden_channels: list[int],
activation: type[nn.Module] = nn.ReLU,
dropout: float = 0.0
):
layers = []
for hidden_dim in hidden_channels:
layers.append(nn.LazyLinear(out_features=hidden_dim))
layers.append(nn.Dropout(dropout))
layers.append(activation())
layers.append(nn.LazyLinear(out_features=out_channels))
super().__init__(*layers)
class ConcatMLP(LazyMLP):
def forward(self, *inputs):
x = cat([*inputs], 1)
x = super().forward(x)
return x
# class ConcatMLP(MLP1):
# def forward(self, *inputs):
# x = cat([*inputs], 1)
# for module in self:
# x = module(x)
# return x