libokj's picture
Update deepscreen/models/dti.py
0cb6552 verified
raw
history blame
6.78 kB
from functools import partial
from typing import Optional, Sequence, Dict
from torch import nn, optim, Tensor
from lightning import LightningModule
from torchmetrics import Metric, MetricCollection
class DTILightningModule(LightningModule):
"""
Drug Target Interaction Prediction
optimizer: a partially or fully initialized instance of class torch.optim.Optimizer
drug_encoder: a fully initialized instance of class torch.nn.Module
protein_encoder: a fully initialized instance of class torch.nn.Module
classifier: a fully initialized instance of class torch.nn.Module
model: a fully initialized instance of class torch.nn.Module
metrics: a list of fully initialized instances of class torchmetrics.Metric
"""
extra_return_keys = ['ID1', 'X1', 'ID2', 'X2', 'N']
def __init__(
self,
optimizer: optim.Optimizer,
scheduler: Optional[optim.lr_scheduler | Dict],
predictor: nn.Module,
metrics: Optional[Dict[str, Metric]] = (),
out: nn.Module = None,
loss: nn.Module = None,
activation: nn.Module = None,
):
super().__init__()
self.predictor = predictor
self.out = out
self.loss = loss
self.activation = activation
# Automatically averaged over batches:
# Separate metric instances for train, val and test step to ensure a proper reduction over the epoch
metrics = MetricCollection(dict(metrics))
self.train_metrics = metrics.clone(prefix="train/")
self.val_metrics = metrics.clone(prefix="val/")
self.test_metrics = metrics.clone(prefix="test/")
# allows access to init params with 'self.hparams' attribute and ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False,
ignore=['predictor', 'out', 'loss', 'activation', 'metrics'])
def setup(self, stage):
match stage:
case 'fit':
dataloader = self.trainer.datamodule.train_dataloader()
dummy_batch = next(iter(dataloader))
self.forward(dummy_batch)
# case 'validate':
# dataloader = self.trainer.datamodule.val_dataloader()
# case 'test':
# dataloader = self.trainer.datamodule.test_dataloader()
# case 'predict':
# dataloader = self.trainer.datamodule.predict_dataloader()
# for key, value in dummy_batch.items():
# if isinstance(value, Tensor):
# dummy_batch[key] = value.to(self.device)
def forward(self, batch):
output = self.predictor(batch['X1^'], batch['X2^'])
target = batch.get('Y')
indexes = batch.get('ID^')
preds = None
loss = None
if isinstance(output, Tensor):
output = self.out(output).squeeze(1)
preds = self.activation(output)
elif isinstance(output, Sequence):
output = list(output)
# If multi-objective, assume the zeroth element in `output` is main while the rest are auxiliary
output[0] = self.out(output[0]).squeeze(1)
# Downstream metrics evaluation only needs main-objective preds
preds = self.activation(output[0])
if target is not None:
loss = self.loss(output, target.float())
return preds, target, indexes, loss
def training_step(self, batch, batch_idx):
preds, target, indexes, loss = self.forward(batch)
self.log('train/loss', loss, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True)
self.train_metrics(preds=preds, target=target, indexes=indexes.long())
self.log_dict(self.train_metrics, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True)
return_dict = {
'Y^': preds,
'Y': target,
'loss': loss
}
for key in self.extra_return_keys:
if key in batch:
return_dict[key] = batch[key]
return return_dict
def on_train_epoch_end(self):
pass
def validation_step(self, batch, batch_idx):
preds, target, indexes, loss = self.forward(batch)
self.log('val/loss', loss, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True)
self.val_metrics(preds=preds, target=target, indexes=indexes.long())
self.log_dict(self.val_metrics, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True)
return_dict = {
'Y^': preds,
'Y': target,
'loss': loss
}
for key in self.extra_return_keys:
if key in batch:
return_dict[key] = batch[key]
return return_dict
def on_validation_epoch_end(self):
pass
def test_step(self, batch, batch_idx):
preds, target, indexes, loss = self.forward(batch)
self.log('test/loss', loss, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True)
self.test_metrics(preds=preds, target=target, indexes=indexes.long())
self.log_dict(self.test_metrics, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True)
return_dict = {
'Y^': preds,
'Y': target,
'loss': loss
}
for key in self.extra_return_keys:
if key in batch:
return_dict[key] = batch[key]
return return_dict
def on_test_epoch_end(self):
pass
def predict_step(self, batch, batch_idx, dataloader_idx=0):
preds, _, _, _ = self.forward(batch)
# return a dictionary for callbacks like BasePredictionWriter
return_dict = {
'Y^': preds,
}
for key in self.extra_return_keys:
if key in batch:
return_dict[key] = batch[key]
return return_dict
def configure_optimizers(self):
optimizers_config = {'optimizer': self.hparams.optimizer(params=self.parameters())}
if self.hparams.get('scheduler'):
if isinstance(self.hparams.scheduler, partial):
optimizers_config['lr_scheduler'] = {
"scheduler": self.hparams.scheduler(optimizer=optimizers_config['optimizer']),
"monitor": "val/loss",
"interval": "epoch",
"frequency": 1,
}
else:
self.hparams.scheduler['scheduler'] = self.hparams.scheduler['scheduler'](
optimizer=optimizers_config['optimizer']
)
optimizers_config['lr_scheduler'] = dict(self.hparams.scheduler)
return optimizers_config