Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import glob | |
import smtplib | |
from datetime import datetime, timedelta | |
import itertools | |
import textwrap | |
from email.mime.multipart import MIMEMultipart | |
from email.mime.text import MIMEText | |
from email.utils import formatdate, make_msgid | |
from functools import cache | |
from math import pi | |
from time import sleep, time | |
from uuid import uuid4 | |
import io | |
import os | |
from pathlib import Path | |
import sys | |
import pytz | |
from Bio import SeqIO | |
from Bio.Align import PairwiseAligner | |
from email_validator import validate_email, EmailNotValidError | |
import gradio as gr | |
import hydra | |
import pandas as pd | |
from pandarallel import pandarallel | |
import requests | |
from rdkit.DataStructs import BulkTanimotoSimilarity | |
from requests.adapters import HTTPAdapter, Retry | |
from markdown import markdown | |
from rdkit import Chem | |
from rdkit.Chem import AllChem, Draw, RDConfig, PandasTools, Descriptors, rdMolDescriptors, rdmolops, Lipinski, Crippen | |
from rdkit.Chem.Features.ShowFeats import _featColors | |
from rdkit.Chem.Scaffolds import MurckoScaffold | |
import py3Dmol | |
from bokeh.models import Legend, NumberFormatter, BooleanFormatter, HTMLTemplateFormatter, LegendItem | |
from bokeh.palettes import Category20c_20 | |
from bokeh.plotting import figure | |
from bokeh.transform import cumsum | |
from bokeh.resources import INLINE | |
import seaborn as sns | |
import panel as pn | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from tinydb import TinyDB, Query | |
#import swifter | |
from tqdm.auto import tqdm | |
from deepscreen.data.dti import validate_seq_str, rdkit_canonicalize, FASTA_PAT, SMILES_PAT | |
from deepscreen.predict import predict | |
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score')) | |
import sascorer | |
DATASET_MAX_LEN = 10_240 | |
SERVER_DATA_DIR = os.getenv('DATA') # '/data' | |
DB_EXPIRY = timedelta(hours=48).total_seconds() | |
CSS = """ | |
.help-tip { | |
position: absolute; | |
display: inline-block; | |
top: 16px; | |
right: 0px; | |
text-align: center; | |
border-radius: 40%; | |
/* border: 2px solid darkred; background-color: #8B0000;*/ | |
width: 24px; | |
height: 24px; | |
font-size: 16px; | |
line-height: 26px; | |
cursor: default; | |
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1); | |
z-index: 100 !important; | |
} | |
.help-tip:hover { | |
cursor: pointer; | |
/*background-color: #ccc;*/ | |
} | |
.help-tip:before { | |
content: '?'; | |
font-weight: 700; | |
color: #8B0000; | |
z-index: 100 !important; | |
} | |
.help-tip p { | |
visibility: hidden; | |
opacity: 0; | |
text-align: left; | |
background-color: #EFDDE3; | |
padding: 20px; | |
width: 300px; | |
position: absolute; | |
border-radius: 4px; | |
right: -4px; | |
color: #494F5A; | |
font-size: 13px; | |
line-height: normal; | |
transform: scale(0.7); | |
transform-origin: 100% 0%; | |
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1); | |
z-index: 100; | |
} | |
.help-tip:hover p { | |
cursor: default; | |
visibility: visible; | |
opacity: 1; | |
transform: scale(1.0); | |
} | |
.help-tip p:before { | |
position: absolute; | |
content: ''; | |
width: 0; | |
height: 0; | |
border: 6px solid transparent; | |
border-bottom-color: #EFDDE3; | |
right: 10px; | |
top: -12px; | |
} | |
.help-tip p:after { | |
width: 100%; | |
height: 40px; | |
content: ''; | |
position: absolute; | |
top: -5px; | |
left: 0; | |
z-index: 101; | |
} | |
.upload_button { | |
background-color: #008000; | |
} | |
.absolute { | |
position: absolute; | |
} | |
.example { | |
padding: 0; | |
background: none; | |
border: none; | |
text-decoration: underline; | |
box-shadow: none; | |
text-align: left !important; | |
display: inline-block !important; | |
} | |
footer { | |
visibility: hidden | |
} | |
""" | |
class View3DmolCell(py3Dmol.view): | |
def __init__(self, width=320, height=200): | |
divid = "3dmolviewer_UNIQUEID" | |
self.uniqueid = None | |
if isinstance(width, int): | |
width = '%dpx' % width | |
if isinstance(height, int): | |
height = '%dpx' % height | |
self.startjs = '''<div id="%s" style="position: relative; width: %s; height: %s;"> | |
</div>\n''' % (divid, width, height) | |
self.startjs += '<script>\n' | |
self.endjs = '</script>' | |
self.updatejs = '' | |
self.viewergrid = None | |
self.startjs += 'viewer_UNIQUEID = $3Dmol.createViewer(document.getElementById("%s"),{backgroundColor:"white"});\n' % divid | |
self.startjs += "viewer_UNIQUEID.zoomTo();\n" | |
self.endjs = "viewer_UNIQUEID.render();\n" + self.endjs | |
FEAT_FACTORY = AllChem.BuildFeatureFactory(os.path.join(RDConfig.RDDataDir, 'BaseFeatures.fdef')) | |
def rgb_to_hex(rgb): | |
rgb = tuple(round(i * 255) for i in rgb) | |
return '#{:02x}{:02x}{:02x}'.format(rgb[0], rgb[1], rgb[2]) | |
def mol_to_pharm3d(mol, mode='html'): | |
try: | |
# AllChem.Compute2DCoords(mol) | |
mol = Chem.AddHs(mol) | |
params = AllChem.ETKDGv3() | |
params.randomSeed = 0xf00d # for reproducibility | |
AllChem.EmbedMolecule(mol, params) | |
feats = FEAT_FACTORY.GetFeaturesForMol(mol) | |
view = View3DmolCell(width=320, height=200) | |
for feat in feats: | |
pos = feat.GetPos() | |
color = _featColors.get(feat.GetFamily(), (.5, .5, .5)) | |
view.addSphere({ | |
'center': {'x': pos.x, 'y': pos.y, 'z': pos.z}, | |
'radius': 0.5, | |
'color': rgb_to_hex(color) | |
}) | |
mol_block = Chem.MolToMolBlock(mol) | |
view.addModel(mol_block, 'sdf') | |
view.setStyle({'stick': {}}) | |
view.zoomTo() | |
if mode == 'html': | |
return view.write_html() | |
# case 'png': | |
# return view.png() | |
except Exception: | |
return None | |
class HelpTip: | |
def __new__(cls, text): | |
return gr.HTML( | |
# elem_classes="absolute", | |
value=f'<div class="help-tip"><p>{text}</p>', | |
) | |
TASK_MAP = { | |
'Compound-Protein Interaction': 'DTI', | |
'Compound-Protein Binding Affinity': 'DTA', | |
} | |
TASK_METRIC_MAP = { | |
'DTI': 'AUROC', | |
'DTA': 'CI', | |
'Compound-Protein Interaction': 'AUROC', | |
'Compound-Protein Binding Affinity': 'CI', | |
'CPI': 'DTI', | |
'CPA': 'DTA', | |
} | |
PRESET_MAP = { | |
'DeepDTA': 'deep_dta', | |
'DeepConvDTI': 'deep_conv_dti', | |
'GraphDTA': 'graph_dta', | |
'MGraphDTA': 'm_graph_dta', | |
'HyperAttentionDTI': 'hyper_attention_dti', | |
'MolTrans': 'mol_trans', | |
'TransformerCPI': 'transformer_cpi', | |
'TransformerCPI2': 'transformer_cpi_2', | |
'DrugBAN': 'drug_ban', | |
'DrugVQA-Seq': 'drug_vqa' | |
} | |
TARGET_FAMILY_MAP = { | |
'General': 'general', | |
'Kinase': 'kinase', | |
'Non-Kinase Enzyme': 'non_kinase_enzyme', | |
'Membrane Receptor': 'membrane_receptor', | |
'Nuclear Receptor': 'nuclear_receptor', | |
'Ion Channel': 'ion_channel', | |
'Others': 'others', | |
# 'general': 'general', | |
# 'kinase': 'kinase', | |
# 'non-kinase enzyme': 'non_kinase_enzyme', | |
# 'membrane receptor': 'membrane_receptor', | |
# 'nuclear Receptor': 'nuclear_receptor', | |
# 'ion channel': 'ion_channel', | |
# 'others': 'others', | |
} | |
TARGET_LIBRARY_MAP = { | |
'DrugBank (Human)': 'drugbank_targets.csv', | |
'ChEMBL33 (Human)': 'ChEMBL33_human_proteins.csv', | |
} | |
DRUG_LIBRARY_MAP = { | |
'DrugBank (Human)': 'drugbank_compounds.csv', | |
'Drug Repurposing Hub': 'drug_repurposing_hub.csv', | |
'Enamine Discovery Diversity Set (DDS-10)': 'Enamine_Discovery_Diversity_Set_10_10240cmpds_20240130.csv', | |
'Enamine Phenotypic Screening Library (PSL-5760)': 'Enamine_Phenotypic_Screening_Library_plated_5760cmds_2020_07_20.csv' | |
} | |
COLUMN_ALIASES = { | |
'X1': 'Compound SMILES', | |
'X2': 'Target FASTA', | |
'ID1': 'Compound ID', | |
'ID2': 'Target ID', | |
'Y': 'Actual CPI/CPA', | |
'Y^': 'Predicted CPI/CPA', | |
} | |
DRUG_SCRENN_CPI_OPTS = [ | |
'Calculate Max. Sequence Identity between the Input Target and Targets in the Training Set', | |
'Calculate Max. Tanimoto Similarity between the Hit Compound and Known Ligands of the Input Target', | |
'Calculate Max. Sequence Identity between the Input Target and Known Targets of Hit Compound', | |
] | |
DRUG_SCRENN_CPA_OPTS = [ | |
'Calculate Max. Sequence Identity between the Input Target and Targets in the Training Set', | |
] | |
TARGET_IDENTIFY_CPI_OPTS = [ | |
'Calculate Max. Tanimoto Similarity between the Input Compound and Compounds in the Training Set', | |
'Calculate Max. Sequence Identity between the Identified Target and Known Targets of the Input Compound', | |
'Calculate Max. Tanimoto Similarity between the Input Compound and Known Ligands of the Identified Target', | |
] | |
TARGET_IDENTIFY_CPA_OPTS = [ | |
'Calculate Max. Tanimoto Similarity between the Input Compound and Compounds in the Training Set', | |
] | |
pd.set_option('display.float_format', '{:.3f}'.format) | |
PandasTools.molRepresentation = 'svg' | |
PandasTools.drawOptions = Draw.rdMolDraw2D.MolDrawOptions() | |
PandasTools.drawOptions.clearBackground = False | |
PandasTools.drawOptions.bondLineWidth = 1 | |
PandasTools.drawOptions.explicitMethyl = True | |
PandasTools.drawOptions.singleColourWedgeBonds = True | |
PandasTools.drawOptions.useCDKAtomPalette() | |
PandasTools.molSize = (100, 64) | |
def remove_job_record(job_id): | |
# Delete the job from the database | |
db.remove(Job.id == job_id) | |
# Delete the corresponding files | |
files = glob.glob(f"{SERVER_DATA_DIR}/{job_id}*") | |
for file_path in files: | |
if os.path.exists(file_path): | |
os.remove(file_path) | |
def check_expiry(): | |
Job = Query() | |
jobs = db.all() | |
for job in jobs: | |
# Check if the job has expired | |
if job['status'] != 'RUNNING': | |
expiry_time = job['expiry_time'] if job['expiry_time'] is not None else job['start_time'] + DB_EXPIRY | |
if expiry_time < time(): | |
# Delete the job from the database | |
db.remove(Job.id == job['id']) | |
# Delete the corresponding file | |
files = glob.glob(f"{SERVER_DATA_DIR}/{job['id']}*") | |
for file_path in files: | |
if os.path.exists(file_path): | |
os.remove(file_path) | |
elif job['status'] == 'RUNNING' and time() - job['start_time'] > 4 * 60 * 60: # 4 hours | |
# Mark the job as failed | |
db.update({'status': 'FAILED', | |
'error': 'Job has timed out by exceeding the maximum running time of 4 hours.'}, | |
Job.id == job['id']) | |
if job.get('email'): | |
send_email(job) | |
def smiles_to_ecfp(smiles): | |
mol = Chem.MolFromSmiles(smiles) | |
if mol: | |
ecfp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048) | |
else: | |
ecfp = [] | |
return ecfp | |
def max_tanimoto_similarity(smi, seen_smiles_with_fp): | |
if smi is None or seen_smiles_with_fp is None or seen_smiles_with_fp.empty: | |
return {'Max. Tanimoto Similarity': 0, 'Max. Tanimoto Similarity Compound': None} | |
if smi in seen_smiles_with_fp['X1'].values: | |
compound = smi | |
if 'ID1' in seen_smiles_with_fp.columns: | |
id1 = seen_smiles_with_fp.loc[seen_smiles_with_fp['X1'] == smi, 'ID1'].values[0] | |
if pd.notnull(id1) and id1 != '': | |
compound = id1 | |
return {'Max. Tanimoto Similarity': 1, 'Max. Tanimoto Similarity Compound': compound} | |
mol = Chem.MolFromSmiles(smi) | |
if mol is None: | |
return {'Max. Tanimoto Similarity': 0, 'Max. Tanimoto Similarity Compound': None} | |
mol_ecfp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048) | |
sims = pd.Series(BulkTanimotoSimilarity(mol_ecfp, seen_smiles_with_fp['FP'].values)).to_numpy() | |
idx = sims.argmax() | |
compound = seen_smiles_with_fp.iloc[idx]['X1'] | |
if 'ID1' in seen_smiles_with_fp.columns: | |
id1 = seen_smiles_with_fp.iloc[idx]['ID1'] | |
if pd.notnull(id1) and id1 != '': | |
compound = id1 | |
return {'Max. Tanimoto Similarity': sims[idx], 'Max. Tanimoto Similarity Compound': compound} | |
def alignment_score(query, target): | |
aligner = PairwiseAligner() | |
aligner.mode = 'local' | |
alignment = aligner.align(query, target) | |
return alignment.score / max(len(query), len(target)) | |
def max_sequence_identity(seq, seen_fastas): | |
if seq is None or seen_fastas is None or seen_fastas.empty: | |
return {'Max. Sequence Identity': 0, 'Max. Sequence Identity Target': None} | |
if seq in seen_fastas['X2'].values: | |
target = seq | |
if 'ID2' in seen_fastas.columns: | |
id2 = seen_fastas.loc[seen_fastas['X2'] == seq, 'ID2'].values[0] | |
if pd.notnull(id2) and id2 != '': | |
target = id2 | |
return {'Max. Sequence Identity': 1, 'Max. Sequence Identity Target': target} | |
cached_alignment_score = cache(alignment_score) | |
max_iden = 0 | |
target = None | |
for fasta in seen_fastas['X2'].values: | |
identity = cached_alignment_score(seq, fasta) | |
if identity > max_iden: | |
max_iden = identity | |
target = fasta | |
if 'ID2' in seen_fastas.columns: | |
id2 = seen_fastas.loc[seen_fastas['X2'] == fasta, 'ID2'].values[0] | |
if pd.notnull(id2) and id2 != '': | |
target = id2 | |
if max_iden == 1: | |
break | |
cached_alignment_score.cache_clear() | |
return {'Max. Sequence Identity': max_iden, 'Max. Sequence Identity Target': target} | |
def get_seen_smiles(family, task): | |
if family == 'General': | |
family = 'all_families_full' | |
else: | |
family = TARGET_FAMILY_MAP[family.title()] | |
seen_smiles = pd.read_csv( | |
f'data/benchmarks/seen_compounds/{family}_{task.lower()}_random_split.csv') | |
return seen_smiles | |
def get_seen_fastas(family, task): | |
if family == 'General': | |
family = 'all_families_full' | |
else: | |
family = TARGET_FAMILY_MAP[family.title()] | |
seen_fastas = pd.read_csv( | |
f'data/benchmarks/seen_targets/{family}_{task.lower()}_random_split.csv') | |
return seen_fastas | |
def get_fasta_family_map(): | |
usecols = ['X2', 'ID2', 'Target Family'] | |
fasta_family_map = pd.concat([ | |
pd.read_csv('data/target_libraries/ChEMBL33_all_spe_single_prot_info.csv', usecols=usecols), | |
pd.read_csv('data/target_libraries/idmapping_not_in_chembl.csv', usecols=usecols) | |
]).drop_duplicates(subset=['X2'], keep='first') | |
return fasta_family_map | |
def lipinski(mol): | |
""" | |
Lipinski's rules: | |
Hydrogen bond donors <= 5 | |
Hydrogen bond acceptors <= 10 | |
Molecular weight <= 500 daltons | |
logP <= 5 | |
""" | |
return ( | |
Lipinski.NumHDonors(mol) <= 5 and | |
Lipinski.NumHAcceptors(mol) <= 10 and | |
Descriptors.MolWt(mol) <= 500 and | |
Crippen.MolLogP(mol) <= 5 | |
) | |
def reos(mol): | |
""" | |
Rapid Elimination Of Swill filter: | |
Molecular weight between 200 and 500 | |
LogP between -5.0 and +5.0 | |
H-bond donor count between 0 and 5 | |
H-bond acceptor count between 0 and 10 | |
Formal charge between -2 and +2 | |
Rotatable bond count between 0 and 8 | |
Heavy atom count between 15 and 50 | |
""" | |
return ( | |
200 <= Descriptors.MolWt(mol) <= 500 and | |
-5.0 <= Crippen.MolLogP(mol) <= 5.0 and | |
0 <= Lipinski.NumHDonors(mol) <= 5 and | |
0 <= Lipinski.NumHAcceptors(mol) <= 10 and | |
-2 <= rdmolops.GetFormalCharge(mol) <= 2 and | |
0 <= rdMolDescriptors.CalcNumRotatableBonds(mol) <= 8 and | |
15 <= rdMolDescriptors.CalcNumHeavyAtoms(mol) <= 50 | |
) | |
def ghose(mol): | |
""" | |
Ghose drug like filter: | |
Molecular weight between 160 and 480 | |
LogP between -0.4 and +5.6 | |
Atom count between 20 and 70 | |
Molar refractivity between 40 and 130 | |
""" | |
return ( | |
160 <= Descriptors.MolWt(mol) <= 480 and | |
-0.4 <= Crippen.MolLogP(mol) <= 5.6 and | |
20 <= rdMolDescriptors.CalcNumAtoms(mol) <= 70 and | |
40 <= Crippen.MolMR(mol) <= 130 | |
) | |
def veber(mol): | |
""" | |
The Veber filter is a rule of thumb filter for orally active drugs described in | |
Veber et al., J Med Chem. 2002; 45(12): 2615-23.: | |
Rotatable bonds <= 10 | |
Topological polar surface area <= 140 | |
""" | |
return ( | |
rdMolDescriptors.CalcNumRotatableBonds(mol) <= 10 and | |
rdMolDescriptors.CalcTPSA(mol) <= 140 | |
) | |
def rule_of_three(mol): | |
""" | |
Rule of Three filter (Congreve et al., Drug Discov. Today. 8 (19): 876–7, (2003).): | |
Molecular weight <= 300 | |
LogP <= 3 | |
H-bond donor <= 3 | |
H-bond acceptor count <= 3 | |
Rotatable bond count <= 3 | |
""" | |
return ( | |
Descriptors.MolWt(mol) <= 300 and | |
Crippen.MolLogP(mol) <= 3 and | |
Lipinski.NumHDonors(mol) <= 3 and | |
Lipinski.NumHAcceptors(mol) <= 3 and | |
rdMolDescriptors.CalcNumRotatableBonds(mol) <= 3 | |
) | |
def load_smarts_patterns(smarts_path): | |
# Load the CSV file containing SMARTS patterns | |
smarts_df = pd.read_csv(Path(smarts_path)) | |
# Convert all SMARTS patterns to molecules | |
smarts_mols = [Chem.MolFromSmarts(smarts) for smarts in smarts_df['smarts']] | |
return smarts_mols | |
def smarts_filter(mol, smarts_mols): | |
for smarts_mol in smarts_mols: | |
if smarts_mol is not None and mol.HasSubstructMatch(smarts_mol): | |
return False | |
return True | |
def pains(mol): | |
smarts_mols = load_smarts_patterns("data/filters/pains.csv") | |
return smarts_filter(mol, smarts_mols) | |
def mlsmr(mol): | |
smarts_mols = load_smarts_patterns("data/filters/mlsmr.csv") | |
return smarts_filter(mol, smarts_mols) | |
def dundee(mol): | |
smarts_mols = load_smarts_patterns("data/filters/dundee.csv") | |
return smarts_filter(mol, smarts_mols) | |
def glaxo(mol): | |
smarts_mols = load_smarts_patterns("data/filters/glaxo.csv") | |
return smarts_filter(mol, smarts_mols) | |
def bms(mol): | |
smarts_mols = load_smarts_patterns("data/filters/bms.csv") | |
return smarts_filter(mol, smarts_mols) | |
SCORE_MAP = { | |
'SAscore': sascorer.calculateScore, | |
'LogP': Crippen.MolLogP, | |
'Molecular Weight': Descriptors.MolWt, | |
'Number of Atoms': rdMolDescriptors.CalcNumAtoms, | |
'Number of Heavy Atoms': rdMolDescriptors.CalcNumHeavyAtoms, | |
'Molar Refractivity': Crippen.MolMR, | |
'H-Bond Donor Count': Lipinski.NumHDonors, | |
'H-Bond Acceptor Count': Lipinski.NumHAcceptors, | |
'Rotatable Bond Count': rdMolDescriptors.CalcNumRotatableBonds, | |
'Topological Polar Surface Area': rdMolDescriptors.CalcTPSA, | |
} | |
FILTER_MAP = { | |
# TODO support number_of_violations | |
'REOS': reos, | |
"Lipinski's Rule of Five": lipinski, | |
'Ghose': ghose, | |
'Rule of Three': rule_of_three, | |
'Veber': veber, | |
'PAINS': pains, | |
'MLSMR': mlsmr, | |
'Dundee': dundee, | |
'Glaxo': glaxo, | |
'BMS': bms, | |
} | |
def validate_columns(df, mandatory_cols): | |
missing_cols = [col for col in mandatory_cols if col not in df.columns] | |
if missing_cols: | |
error_message = (f"The following mandatory columns are missing " | |
f"in the uploaded dataset: {str(mandatory_cols).strip('[]')}.") | |
raise ValueError(error_message) | |
else: | |
return | |
def process_target_fasta(sequence): | |
try: | |
if sequence: | |
lines = sequence.strip().split("\n") | |
if lines[0].startswith(">"): | |
lines = lines[1:] | |
return ''.join(lines).split(">")[0].strip() | |
# record = list(SeqIO.parse(io.StringIO(sequence), "fasta"))[0] | |
# return str(record.seq) | |
else: | |
raise ValueError('Empty FASTA sequence.') | |
except Exception as e: | |
raise gr.Error(f'Failed to process FASTA due to error: {str(e)}') | |
def send_email(job_info): | |
if job_info.get('email'): | |
try: | |
email_info = job_info.copy() | |
email_serv = os.getenv('EMAIL_SERV') | |
email_port = os.getenv('EMAIL_PORT') | |
email_addr = os.getenv('EMAIL_ADDR') | |
email_pass = os.getenv('EMAIL_PASS') | |
email_form = os.getenv('EMAIL_FORM') | |
email_subj = os.getenv('EMAIL_SUBJ') | |
for key, value in email_info.items(): | |
if key.endswith("time") and value: | |
email_info[key] = ts_to_str(value, get_timezone_by_ip(email_info['ip'])) | |
server = smtplib.SMTP(email_serv, int(email_port)) | |
# server.starttls() | |
server.login(email_addr, email_pass) | |
msg = MIMEMultipart("alternative") | |
msg["From"] = email_addr | |
msg["To"] = email_info['email'] | |
msg["Subject"] = email_subj.format(**email_info) | |
msg["Date"] = formatdate(localtime=True) | |
msg["Message-ID"] = make_msgid() | |
msg.attach(MIMEText(markdown(email_form.format(**email_info)), 'html')) | |
msg.attach(MIMEText(email_form.format(**email_info), 'plain')) | |
server.sendmail(email_addr, email_info['email'], msg.as_string()) | |
server.quit() | |
gr.Info('Email notification sent.') | |
except Exception as e: | |
gr.Warning('Failed to send email notification due to error: ' + str(e)) | |
def check_user_running_job(email, request): | |
message = ("You already have a running prediction job (ID: {id}) under this {reason}. " | |
"Please wait for it to complete before submitting another job.") | |
try: | |
# with open('jobs.json', 'r') as f: # /data/ | |
# # Load the JSON data from the file | |
# jobs = json.load(f) | |
# | |
# for job_id, job_info in jobs.items(): | |
# # check if a job is running for the email | |
# if email: | |
# if job_info["email"] == email and job_info["status"] == "running": | |
# return message.format(id=job_id, reason="email") | |
# # check if a job is running for the session | |
# elif request.cookies: | |
# for key, value in job_info["cookies"].items() and job_info["status"] == "running": | |
# if key in request.cookies and request.cookies[key] == value: | |
# return message.format(id=job_id, reason="session") | |
# # check if a job is running for the IP | |
# else: | |
# if job_info["IP"] == request.client.host and job_info["status"] == "running": | |
# return message.format(id=job_id, reason="IP") | |
# check if a job is running for the email | |
Job = Query() | |
if email: | |
job = db.search((Job.email == email) & (Job.status == "RUNNING")) | |
if job: | |
return message.format(id=job[0]['id'], reason="email") | |
# check if a job is running for the session | |
elif request.cookies: | |
for key, value in request.cookies.items(): | |
job = db.search((Job.cookies[key] == value) & (Job.status == "RUNNING")) | |
if job: | |
return message.format(id=job[0]['id'], reason="session") | |
# check if a job is running for the IP | |
else: | |
job = db.search((Job.IP == request.client.host) & (Job.status == "RUNNING")) | |
if job: | |
return message.format(id=job[0]['id'], reason="IP") | |
return False | |
except Exception as e: | |
raise gr.Error(f'Failed to validate user running jobs due to error: {str(e)}') | |
def get_timezone_by_ip(ip): | |
try: | |
data = session.get(f'https://worldtimeapi.org/api/ip/{ip}').json() | |
return data['timezone'] | |
except Exception: | |
return 'UTC' | |
def ts_to_str(timestamp, timezone): | |
# Create a timezone-aware datetime object from the UNIX timestamp | |
dt = datetime.fromtimestamp(timestamp, pytz.utc) | |
# Convert the timezone-aware datetime object to the target timezone | |
target_timezone = pytz.timezone(timezone) | |
localized_dt = dt.astimezone(target_timezone) | |
# Format the datetime object to the specified string format | |
return localized_dt.strftime('%Y-%m-%d %H:%M:%S (%Z%z)') | |
def lookup_job(job_id): | |
gr.Info('Start querying the job database...') | |
stop = False | |
retry = 0 | |
while not stop: | |
try: | |
sleep(5) | |
Job = Query() | |
jobs = db.search((Job.id == job_id)) | |
if jobs: | |
job = jobs[0] | |
job_status = job['status'] | |
job_type = job['type'] | |
error = job['error'] | |
start_time = ts_to_str(job['start_time'], get_timezone_by_ip(job['ip'])) | |
if job.get('end_time'): | |
end_time = ts_to_str(job['end_time'], get_timezone_by_ip(job['ip'])) | |
if job.get('expiry_time'): | |
expiry_time = ts_to_str(job['expiry_time'], get_timezone_by_ip(job['ip'])) | |
if job_status == "RUNNING": | |
yield { | |
pred_lookup_status: f''' | |
Your **{job_type}** job (ID: **{job_id}**) started at | |
**{start_time}** and is **RUNNING...** | |
It might take a few minutes up to a few hours depending on the prediction dataset, the model, and the queue status. | |
You may keep the page open and wait for job completion, or close the page and revisit later to look up the job status | |
using the job id. You will also receive an email notification once the job is done. | |
''', | |
pred_lookup_btn: gr.Button(visible=False), | |
pred_lookup_stop_btn: gr.Button(visible=True) | |
} | |
if job_status == "COMPLETED": | |
stop = True | |
msg = f"Your {job_type} job (ID: {job_id}) has been **COMPLETED**" | |
msg += f" at {end_time}" if job.get('end_time') else "" | |
msg += f" and the results will expire by {expiry_time}." if job.get('expiry_time') else "." | |
msg += f' Redirecting to the report page...' | |
gr.Info(msg) | |
yield { | |
pred_lookup_status: msg, | |
pred_lookup_btn: gr.Button(visible=True), | |
pred_lookup_stop_btn: gr.Button(visible=False), | |
tabs: gr.Tabs(selected='Chemical Property Report'), | |
file_for_report: job['output_file'] | |
} | |
if job_status == "FAILED": | |
stop = True | |
msg = f'Your {job_type} job (ID: {job_id}) has **FAILED**' | |
msg += f' at {end_time}' if job.get('end_time') else '' | |
msg += f' due to error: {error}.' if job.get('expiry_time') else '.' | |
gr.Info(msg) | |
yield { | |
pred_lookup_status: msg, | |
pred_lookup_btn: gr.Button(visible=True), | |
pred_lookup_stop_btn: gr.Button(visible=False), | |
tabs: gr.Tabs(selected='Prediction Status Lookup'), | |
} | |
else: | |
stop = (retry > 3) | |
if not stop: | |
msg = f'Job ID {job_id} not found. Retrying... ({retry})' | |
else: | |
msg = f'Job ID {job_id} not found after {retry} retries. Please check the job ID and try again.' | |
gr.Info(msg) | |
retry += 1 | |
yield { | |
pred_lookup_status: msg, | |
pred_lookup_btn: gr.Button(visible=True), | |
pred_lookup_stop_btn: gr.Button(visible=False), | |
tabs: gr.Tabs(selected='Prediction Status Lookup'), | |
} | |
except Exception as e: | |
raise gr.Error(f'Failed to retrieve job status due to error: {str(e)}') | |
def apply_advanced_opts(prediction_df, opts, df_training): | |
# Advanced options for Drug Hit Screening | |
if "Calculate Max. Sequence Identity between the Input Target and Targets in the Training Set" in opts: | |
x2 = prediction_df['X2'].iloc[0] | |
prediction_df[[ | |
'Max. Sequence Identity to Training Targets', | |
'Max. Id. Training Target' | |
]] = pd.Series(max_sequence_identity(x2, df_training)) | |
if "Calculate Max. Tanimoto Similarity between the Hit Compound and Known Ligands of the Input Target" in opts: | |
x2 = prediction_df['X2'].iloc[0] | |
pos_compounds_df = df_training.loc[(df_training['X2'] == x2) & (df_training['Y'] == 1)].copy() | |
pos_compounds_df['FP'] = pos_compounds_df['X1'].parallel_apply(smiles_to_ecfp) | |
def max_sim(smiles): | |
return max_tanimoto_similarity(smiles, pos_compounds_df) | |
prediction_df[[ | |
'Max. Tanimoto Similarity to Known Ligands', | |
'Max. Sim. Ligand' | |
]] = prediction_df['X1'].parallel_apply(max_sim).apply(pd.Series) | |
max_sim.cache_clear() | |
if "Calculate Max. Sequence Identity between the Input Target and Known Targets of Hit Compound" in opts: | |
x2 = prediction_df['X2'].iloc[0] | |
prediction_df['X1^'] = prediction_df['X1'].parallel_apply(rdkit_canonicalize) | |
def max_id(compound): | |
pos_targets_df = df_training.loc[df_training['X1'] == compound] | |
return max_sequence_identity(x2, pos_targets_df) | |
prediction_df[['Max. Sequence Identity to Known Targets of Hit Compound', | |
'Max. Id. Target']] = ( | |
prediction_df['X1^'].parallel_apply(max_id).apply(pd.Series) | |
) | |
prediction_df.drop(['X1^'], axis=1, inplace=True) | |
max_id.cache_clear() | |
# Advanced options for Target Protein Identification | |
if "Calculate Max. Tanimoto Similarity between the Input Compound and Compounds in the Training Set" in opts: | |
x1 = rdkit_canonicalize(prediction_df['X1'].iloc[0]) | |
if x1 not in df_training['X1'].values: | |
df_training['FP'] = df_training['X1'].parallel_apply(smiles_to_ecfp) | |
prediction_df[[ | |
'Max. Tanimoto Similarity to Training Compounds', | |
'Max. Sim. Training Compound' | |
]] = pd.Series(max_tanimoto_similarity(x1, df_training)) | |
if "Calculate Max. Sequence Identity between the Identified Target and Known Targets of the Input Compound" in opts: | |
x1 = rdkit_canonicalize(prediction_df['X1'].iloc[0]) | |
pos_targets_df = df_training.loc[(df_training['X1'] == x1) & (df_training['Y'] == 1)].copy() | |
def max_id(fasta): | |
return max_sequence_identity(fasta, pos_targets_df) | |
prediction_df[[ | |
'Max. Sequence Identity to Known Targets of Input Compound', | |
'Max. Id. Target' | |
]] = prediction_df['X2'].parallel_apply(max_id).apply(pd.Series) | |
max_id.cache_clear() | |
if "Calculate Max. Tanimoto Similarity between the Input Compound and Known Ligands of the Identified Target" in opts: | |
x1 = rdkit_canonicalize(prediction_df['X1'].iloc[0]) | |
def max_sim(fasta): | |
pos_targets_df = df_training.loc[(df_training['X2'] == fasta) & (df_training['Y'] == 1)].copy() | |
if x1 not in pos_targets_df['X1'].values: | |
pos_targets_df['FP'] = pos_targets_df['X1'].apply(smiles_to_ecfp) | |
return max_tanimoto_similarity(x1, pos_targets_df) | |
prediction_df[[ | |
'Max. Tanimoto Similarity to Known Ligands of Identified Target', | |
'Max. Sim. Ligand' | |
]] = prediction_df['X2'].parallel_apply(max_sim).apply(pd.Series) | |
max_sim.cache_clear() | |
return prediction_df | |
def submit_predict(predict_filepath, task, preset, target_family, opts, job_info): | |
job_id = job_info['id'] | |
status = job_info['status'] | |
send_email(job_info) | |
db.insert(job_info) | |
error = None | |
task_file_abbr = {'Compound-Protein Interaction': 'CPI', 'Compound-Protein Binding Affinity': 'CPA'} | |
predictions_file = None | |
df_training = pd.read_csv(f'data/complete_{TASK_MAP[task].lower()}_dataset.csv') | |
df_training['X1^'] = df_training['X1'] | |
orig_df = pd.read_csv(predict_filepath) | |
alignment_df = get_fasta_family_map() | |
prediction_df = pd.DataFrame() | |
def detect_family(query): | |
# Check for an exact match first | |
exact_match = alignment_df[alignment_df['X2'] == query] | |
if not exact_match.empty: | |
row = exact_match.iloc[0] | |
return row['Target Family'] | |
# If no exact match, then calculate alignment score | |
else: | |
aligner = PairwiseAligner() | |
aligner.mode = 'local' | |
def align_score(target): | |
alignment = aligner.align(query, target) | |
return alignment.score / max(len(query), len(target)) | |
alignment_df['score'] = alignment_df['X2'].apply(align_score) | |
row = alignment_df[alignment_df['score'] == alignment_df['score'].max()].iloc[0] | |
return row['Target Family'] | |
if 'Target Family' not in orig_df.columns: | |
orig_df['Target Family'] = None | |
if orig_df['Target Family'].isna().any(): | |
orig_df = orig_df.reset_index(drop=True) | |
if orig_df['X2'].nunique() > 1: | |
orig_df.loc[orig_df['Target Family'].isna(), 'Target Family'] = ( | |
orig_df.loc[orig_df['Target Family'].isna(), 'X2'].parallel_apply(detect_family) | |
) | |
else: | |
orig_df['Target Family'] = detect_family(orig_df['X2'].iloc[0]) | |
orig_df['Target Family'] = orig_df['Target Family'].str.capitalize() | |
detect_family.cache_clear() | |
orig_df['X1^'] = orig_df['X1'].parallel_apply(rdkit_canonicalize) | |
orig_df = orig_df.merge(df_training[['X1^', 'X2', 'Y']], on=['X1^', 'X2'], how='left', indicator=False) | |
annotated_df = orig_df[~orig_df['Y'].isna()].copy() | |
annotated_df.rename(columns={'Y': 'Y^'}, inplace=True) | |
annotated_df['Source'] = 'Database' | |
columns_to_drop = ['X1^', 'Compound', 'Scaffold', 'Scaffold SMILES'] | |
columns_to_drop = [col for col in columns_to_drop if col in annotated_df.columns] | |
annotated_df.drop(columns_to_drop, axis=1, inplace=True) | |
# Save the unannotated data | |
unannotated_df = orig_df[orig_df['Y'].isna()].drop(['Y'], axis=1) | |
if not unannotated_df.empty: | |
unannotated_df.to_csv(predict_filepath, index=False, na_rep='') | |
else: | |
annotated_df.to_csv(predictions_file, index=False, na_rep='') | |
status = "COMPLETED" | |
return {run_state: False} | |
columns_to_drop = ['ID1', 'X1^', 'Compound', 'Scaffold', 'Scaffold SMILES', 'ID2', 'Y', 'Y^'] | |
columns_to_drop = [col for col in columns_to_drop if col in orig_df.columns] | |
orig_df.drop(columns_to_drop, axis=1, inplace=True) | |
try: | |
if target_family != 'Family-Specific Auto-Recommendation': | |
target_family_value = TARGET_FAMILY_MAP[target_family.title()] | |
task_value = TASK_MAP[task] | |
preset_value = PRESET_MAP[preset] | |
predictions_file = (f'{SERVER_DATA_DIR}/' | |
f'{job_id}_{task_file_abbr[task]}_{preset}_{target_family_value}_predictions.csv') | |
cfg = hydra.compose( | |
config_name="webserver_inference", | |
overrides=[f"task={task_value}", | |
f"preset={preset_value}", | |
f"ckpt_path=resources/checkpoints/{preset_value}-{task_value}-{target_family_value}.ckpt", | |
f"data.data_file='{str(predict_filepath)}'"]) | |
predictions, _ = predict(cfg) | |
predictions = pd.concat([pd.DataFrame(prediction) for prediction in predictions], ignore_index=True) | |
predictions['Source'] = f'Predicted ({preset} {target_family})' | |
df_list = [prediction_df, predictions] | |
prediction_df = pd.concat([df for df in df_list if not df.empty]) | |
else: | |
predictions_file = f'{SERVER_DATA_DIR}/{job_id}_{task_file_abbr[task]}_family-recommended_predictions.csv' | |
task_value = TASK_MAP[task] | |
score = TASK_METRIC_MAP[task] | |
benchmark_df = pd.read_csv(f'data/benchmarks/{task_value}_test_metrics.csv') | |
predict_df = pd.read_csv(predict_filepath) | |
for family, subset in predict_df.groupby('Target Family'): | |
predict_subset_filepath = os.path.join( | |
os.path.dirname(predict_filepath), f'{job_id}_{family}_input.csv' | |
) | |
subset.to_csv(predict_subset_filepath, index=False, na_rep='') | |
seen_compounds = get_seen_smiles(family, task_value)['X1'].values | |
if subset['X1^'].iloc[0] in seen_compounds: | |
scenario = "Seen Compound" | |
else: | |
scenario = "Unseen Compound" | |
filtered_df = benchmark_df[(benchmark_df['Family'] == family.title()) | |
& (benchmark_df['Scenario'] == scenario) | |
& (benchmark_df['Type'] == 'Family')] | |
seen_compounds = get_seen_smiles('General', task_value)['X1'].values | |
if subset['X1^'].iloc[0] in seen_compounds: | |
scenario = "Seen Compound" | |
else: | |
scenario = "Unseen Compound" | |
filtered_df = pd.concat([ | |
filtered_df, | |
benchmark_df[(benchmark_df['Family'] == family.title()) | |
& (benchmark_df['Scenario'] == scenario) | |
& (benchmark_df['Type'] == 'General')] | |
]) | |
row = filtered_df.loc[filtered_df[score].idxmax()] | |
preset_value = PRESET_MAP[row['Model']] | |
target_family = TARGET_FAMILY_MAP[family.title()] if row['Type'] == 'Family' else 'general' | |
cfg = hydra.compose( | |
config_name="webserver_inference", | |
overrides=[f"task={task_value}", | |
f"preset={preset_value}", | |
f"ckpt_path=resources/checkpoints/{preset_value}-{task_value}-{target_family}.ckpt", | |
f"data.data_file='{str(predict_subset_filepath)}'"]) | |
predictions, _ = predict(cfg) | |
predictions = pd.concat([pd.DataFrame(prediction) for prediction in predictions], ignore_index=True) | |
predictions['Source'] = (f'Predicted ({row["Model"]} ' | |
f'{family.title() if row["Type"] == "Family" else "General"})') | |
df_list = [prediction_df, predictions] | |
prediction_df = pd.concat([df for df in df_list if not df.empty]) | |
prediction_df = prediction_df.merge(orig_df, on=['X1', 'X2'], how='left', indicator=False) | |
df_list = [prediction_df, annotated_df] | |
prediction_df = pd.concat([df for df in df_list if not df.empty], ignore_index=True) | |
prediction_df = apply_advanced_opts(prediction_df, opts, df_training) | |
prediction_df.drop(['N', 'FP'], axis=1, errors='ignore').to_csv(predictions_file, index=False, na_rep='') | |
status = 'COMPLETED' | |
return {run_state: False} | |
except Exception as e: | |
gr.Warning(f"Prediction job failed due to error: {str(e)}") | |
status = "FAILED" | |
predictions_file = None | |
error = str(e) | |
return {run_state: False} | |
finally: | |
Job = Query() | |
job_query = (Job.id == job_id) | |
end_time = time() | |
expiry_time = end_time + DB_EXPIRY | |
db.update({'end_time': end_time, | |
'expiry_time': expiry_time, | |
'status': status, | |
'error': error, | |
'input_file': predict_filepath, | |
'output_file': predictions_file}, | |
job_query) | |
if job_info := db.search(job_query)[0]: | |
if job_info.get('email'): | |
send_email(job_info) | |
def update_df(file, progress=gr.Progress(track_tqdm=True)): | |
if file and Path(file).is_file(): | |
task = None | |
job = None | |
if "_CPI_" in str(file): | |
task = 'Compound-Protein Interaction' | |
elif "_CPA_" in str(file): | |
task = 'Compound-Protein Binding Affinity' | |
df = pd.read_csv(file) | |
if 'N' in df.columns: | |
df.set_index('N', inplace=True) | |
if not any(col in ['X1', 'X2'] for col in df.columns): | |
gr.Warning("At least one of columns `X1` and `X2` must be in the uploaded dataset.") | |
return {analyze_btn: gr.Button(interactive=False)} | |
if 'X1' in df.columns: | |
if 'Compound' not in df.columns or df['Compound'].dtype != 'object': | |
df['Compound'] = df['X1'].parallel_apply( | |
lambda smiles: PandasTools._MolPlusFingerprint(Chem.MolFromSmiles(smiles))) | |
df['Scaffold'] = df['Compound'].parallel_apply(MurckoScaffold.GetScaffoldForMol) | |
df['Scaffold SMILES'] = df['Scaffold'].parallel_apply(lambda x: Chem.MolToSmiles(x)) | |
df['Pharmacophore'] = None | |
if task == 'Compound-Protein Binding Affinity': | |
# Convert Y^ from pIC50 (nM) to IC50 (nM) | |
if 'Y^' in df.columns: | |
df['Y^'] = 10 ** (-df['Y^']) * 1e9 | |
n_compound = df['X1'].nunique() | |
n_protein = df['X2'].nunique() | |
if n_compound == 1 and n_protein >= 2: | |
job = 'Target Protein Identification' | |
if task == 'Compound-Protein Interaction': | |
opts = TARGET_IDENTIFY_CPI_OPTS | |
elif task == 'Compound-Protein Binding Affinity': | |
opts = TARGET_IDENTIFY_CPA_OPTS | |
if n_compound >= 2 and n_protein == 1: | |
job = 'Drug Hit Screening' | |
if task == 'Compound-Protein Interaction': | |
opts = DRUG_SCRENN_CPI_OPTS | |
elif task == 'Compound-Protein Binding Affinity': | |
opts = DRUG_SCRENN_CPA_OPTS | |
return { | |
html_report: create_html_report(df, file=None, task=task), | |
raw_df: df, | |
report_df: df.copy(), | |
analyze_btn: gr.Button(interactive=True), | |
report_task: task, | |
job_opts: gr.CheckboxGroup( | |
label=f'{job} Advanced Options', | |
choices=opts, visible=True | |
) if job else gr.CheckboxGroup(visible=False), | |
} | |
else: | |
return {analyze_btn: gr.Button(interactive=False)} | |
def create_html_report(df, file=None, task=None, opts=(), progress=gr.Progress(track_tqdm=True)): | |
df_html = df.copy(deep=True) | |
column_aliases = COLUMN_ALIASES.copy() | |
cols_left = list(pd.Index([ | |
'ID1', 'ID2', 'Compound', 'Scaffold', 'Pharmacophore', 'X1', 'Scaffold SMILES', 'X2', 'Y^' | |
]).intersection(df_html.columns)) | |
# cols_right = list(pd.Index(['X1', 'X2']).intersection(df_html.columns)) | |
# df_html = df_html[cols_left + (df_html.columns.drop(cols_left + cols_right).tolist()) + cols_right] | |
df_html = df_html[cols_left + df_html.columns.drop(cols_left).tolist()] | |
if isinstance(task, str): | |
column_aliases.update({ | |
'Y^': 'Interaction Probability' if task == 'Compound-Protein Interaction' | |
else 'Binding Affinity (IC50 [nM])' | |
}) | |
ascending = True if column_aliases['Y^'] == 'Binding Affinity (IC50 [nM])' else False | |
df_html = df_html.sort_values( | |
[col for col in ['Y^'] if col in df_html.columns], ascending=ascending | |
) | |
if not file: | |
df_html = df_html.iloc[:31] | |
# Remove repeated info for one-against-N tasks to save visual and physical space | |
job = 'Chemical Property' | |
unique_entity = 'Unique Entity' | |
unique_df = None | |
category = None | |
columns_unique = None | |
if 'Exclude Pharmacophore 3D' not in opts: | |
df_html['Pharmacophore'] = df_html['Compound'].parallel_apply( | |
lambda x: mol_to_pharm3d(x) if not pd.isna(x) else x) | |
if 'Compound' in df_html.columns and 'Exclude Molecular Graph' not in opts: | |
df_html['Compound'] = df_html['Compound'].parallel_apply( | |
lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x) | |
else: | |
df_html.drop(['Compound'], axis=1, inplace=True) | |
if 'Scaffold' in df_html.columns and 'Exclude Scaffold Graph' not in opts: | |
df_html['Scaffold'] = df_html['Scaffold'].parallel_apply( | |
lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x) | |
else: | |
df_html.drop(['Scaffold'], axis=1, inplace=True) | |
if 'X1' in df_html.columns and 'X2' in df_html.columns: | |
n_compound = df_html['X1'].nunique() | |
n_protein = df_html['X2'].nunique() | |
if n_compound == 1 and n_protein >= 2: | |
unique_entity = 'Compound of Interest' | |
if any(col in df_html.columns for col in ['Y^', 'Y']): | |
job = 'Target Protein Identification' | |
category = 'Target Family' | |
columns_unique = df_html.columns.isin( | |
['ID1', 'Compound', 'Scaffold', 'X1', 'Scaffold SMILES', 'Pharmacophore', | |
'Max. Tanimoto Similarity to Training Compounds', 'Max. Sim. Training Compound'] | |
+ list(FILTER_MAP.keys()) + list(SCORE_MAP.keys()) | |
) | |
elif n_compound >= 2 and n_protein == 1: | |
unique_entity = 'Target of Interest' | |
if any(col in df_html.columns for col in ['Y^', 'Y']): | |
job = 'Drug Hit Screening' | |
category = 'Scaffold SMILES' | |
columns_unique = df_html.columns.isin( | |
['X2', 'ID2', 'Target Family', | |
'Max. Sequence Identity to Training Targets', 'Max. Id. Training Target'] | |
) | |
elif 'Y^' in df_html.columns: | |
job = 'Interaction Pair Inference' | |
df_html.rename(columns=column_aliases, inplace=True) | |
df_html.index.name = 'Index' | |
if 'Target FASTA' in df_html.columns: | |
df_html['Target FASTA'] = df_html['Target FASTA'].parallel_apply( | |
lambda x: wrap_text(x) if not pd.isna(x) else x) | |
num_cols = df_html.select_dtypes('number').columns | |
num_col_colors = sns.color_palette('husl', len(num_cols)) | |
bool_cols = df_html.select_dtypes(bool).columns | |
bool_col_colors = {True: 'lightgreen', False: 'lightpink'} | |
if columns_unique is not None: | |
unique_df = df_html.loc[:, columns_unique].iloc[[0]].copy() | |
df_html = df_html.loc[:, ~columns_unique] | |
df_html.dropna(how='all', axis=1, inplace=True) | |
unique_df.dropna(how='all', axis=1, inplace=True) | |
if not file: | |
if 'Compound ID' in df_html.columns: | |
df_html.drop(['Compound SMILES'], axis=1, inplace=True) | |
if 'Target ID' in df_html.columns: | |
df_html.drop(['Target FASTA'], axis=1, inplace=True) | |
if 'Target FASTA' in df_html.columns: | |
df_html['Target FASTA'] = df_html['Target FASTA'].parallel_apply( | |
lambda x: wrap_text(x) if not pd.isna(x) else x) | |
if 'Scaffold SMILES' in df_html.columns: | |
df_html.drop(['Scaffold SMILES'], axis=1, inplace=True) | |
# FIXME: Temporarily drop pharmacophore column before an image solution is found | |
if 'Pharmacophore' in df_html.columns: | |
df_html.drop(['Pharmacophore'], axis=1, inplace=True) | |
if unique_df is not None and 'Pharmacophore' in unique_df.columns: | |
unique_df.drop(['Pharmacophore'], axis=1, inplace=True) | |
styled_df = df_html.fillna('').style.format(precision=3) | |
for i, col in enumerate(num_cols): | |
cmap = sns.light_palette(num_col_colors[i], as_cmap=True) | |
if col in df_html.columns: | |
if col not in ['Binding Affinity (IC50 [nM])']: | |
cmap.set_bad('white') | |
styled_df = styled_df.background_gradient( | |
subset=[col], cmap=cmap) | |
else: | |
cmap = cmap.reversed() | |
cmap.set_bad('white') | |
styled_df = styled_df.background_gradient( | |
subset=[col], cmap=cmap) | |
if any(df_html.columns.isin(bool_cols)): | |
styled_df.applymap(lambda val: f'background-color: {bool_col_colors[val]}', subset=bool_cols) | |
table_html = styled_df.to_html() | |
unique_html = '' | |
if unique_df is not None: | |
if 'Target FASTA' in unique_df.columns: | |
unique_df['Target FASTA'] = unique_df['Target FASTA'].str.replace('\n', '<br>') | |
if 'Max. Sequence Identity to Training Targets' in unique_df.columns: | |
# Add alert emoji for sequence identity below 0.85 | |
if unique_df['Max. Sequence Identity to Training Targets'].iloc[0] < 0.85: | |
unique_df['Max. Sequence Identity to Training Targets'] = ( | |
unique_df['Max. Sequence Identity to Training Targets'].apply( | |
lambda x: f'<span style="color: red;">{x:.3f}' | |
f' ⚠️Lower than recommended (0.85)' | |
f' - predictive reliability may be compromised</span>' | |
) | |
) | |
if 'Max. Tanimoto Similarity to Training Compounds' in unique_df.columns: | |
# Add alert emoji for sequence identity below 0.85 | |
if unique_df['Max. Tanimoto Similarity to Training Compounds'].iloc[0] < 0.85: | |
unique_df['Max. Tanimoto Similarity to Training Compounds'] = ( | |
unique_df['Max. Tanimoto Similarity to Training Compounds'].apply( | |
lambda x: f'<span style="color: red;">{x:.3f}' | |
f' ⚠️Lower than recommended (0.85)' | |
f' - predictive reliability may be compromised</span>' | |
) | |
) | |
if any(unique_df.columns.isin(bool_cols)): | |
unique_df = unique_df.style.applymap( | |
lambda val: f"background-color: {bool_col_colors[val]}", subset=bool_cols) | |
unique_html = (f'<div style="font-family: Courier !important;">' | |
f'{unique_df.to_html(escape=False, index=False)}</div>') | |
return (f'<div style="font-size: 16px; font-weight: bold;">{job} Report Preview (Top 30 Records)</div>' | |
f'<div style="overflow-x:auto; font-family: Courier !important;">{unique_html}</div>' | |
f'<div style="overflow:auto; height: 300px; font-family: Courier !important;">{table_html}</div>') | |
else: | |
image_zoom_formatter = HTMLTemplateFormatter(template='<div class="image-zoom-viewer"><%= value %></div>') | |
uniprot_id_formatter = HTMLTemplateFormatter( | |
template='<% if (value == value) { ' # Check if value is not NaN | |
'if (/^[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}$/.test(value)) ' | |
# Check if value is a valid UniProt ID | |
'{ %><a href="https://www.uniprot.org/uniprotkb/<%= value %>" target="_blank"><%= value %></a><% ' | |
# Else treat it as a sequence or other plain-text string, line-warping every 60 characters | |
'} else { %><div style="white-space: pre-wrap;"><%= value.match(/.{1,60}/g).join("<br>") ' | |
'%></div><% } %><% } else { %><% } %>' # Output empty string if value is NaN | |
) | |
pubchem_id_formatter = HTMLTemplateFormatter( | |
template='<% if (value == value) { ' # Check if value is not NaN | |
'%><a href="https://pubchem.ncbi.nlm.nih.gov/#query=<%= value %>" ' | |
'target="_blank"><%= value %></a>' | |
'<% } else { %><% } %>' # Output empty string if value is NaN | |
) | |
alert_emoji_formatter = HTMLTemplateFormatter( | |
template='<% if (value < 0.85) { ' | |
'%><span style="color: red;"><%= value %> ' | |
'⚠️Lower than recommended (0.85) - predictive reliability may be compromised</span><% ' | |
'} else { %><%= value %><% } %>' | |
) | |
bool_formatters = {col: BooleanFormatter() for col in bool_cols} | |
float_formatters = {col: NumberFormatter(format='0.000') for col in df_html.select_dtypes('floating').columns} | |
other_formatters = { | |
'Interaction Probability': {'type': 'progress', 'max': 1.0, 'legend': True}, | |
'Compound': image_zoom_formatter, | |
'Scaffold': image_zoom_formatter, | |
'Pharmacophore': {'type': 'executeScriptFormatter'}, | |
'Target FASTA': {'type': 'textarea', 'width': 60}, | |
'Target ID': uniprot_id_formatter, | |
'Compound ID': pubchem_id_formatter, | |
'Max. Sim. Ligand': pubchem_id_formatter, | |
'Max. Id. Target': uniprot_id_formatter, | |
'Max. Sim. Training Compound': pubchem_id_formatter, | |
'Max. Id. Training Target': uniprot_id_formatter, | |
'Max. Sequence Identity to Training Targets': alert_emoji_formatter, | |
'Max. Sequence Identity to Known Targets of Hit Compound': alert_emoji_formatter, | |
} | |
formatters = {**bool_formatters, **float_formatters, **other_formatters} | |
# html = df.to_html(file) | |
# return html | |
report_table = pn.widgets.Tabulator( | |
df_html, formatters=formatters, | |
frozen_columns=[ | |
'Index', 'Target ID', 'Compound ID', 'Compound' | |
], | |
disabled=True, sizing_mode='stretch_both', pagination='local', page_size=10 | |
) | |
for i, col in enumerate(num_cols): | |
cmap = sns.light_palette(num_col_colors[i], as_cmap=True) | |
if col not in ['Binding Affinity (IC50 [nM])']: | |
if col not in ['Interaction Probability']: | |
cmap.set_bad(color='white') | |
report_table.style.background_gradient( | |
subset=df_html.columns == col, cmap=cmap) | |
else: | |
continue | |
else: | |
cmap = cmap.reversed() | |
cmap.set_bad(color='white') | |
report_table.style.background_gradient( | |
subset=df_html.columns == col, cmap=cmap) | |
pie_charts = {} | |
for y in df_html.columns.intersection(['Interaction Probability', 'Binding Affinity (IC50 [nM])']): | |
pie_charts[y] = [] | |
for k in [10, 30, 100]: | |
if k < len(df_html): | |
pie_charts[y].append(create_pie_chart(df_html, category=category, value=y, top_k=k)) | |
pie_charts[y].append(create_pie_chart(df_html, category=category, value=y, top_k=len(df_html))) | |
# Remove keys with empty values | |
pie_charts = {k: v for k, v in pie_charts.items() if any(v)} | |
panel_css = """ | |
.tabulator { | |
font-family: Courier New !important; | |
font-weight: normal !important; | |
font-size: 12px !important; | |
} | |
.tabulator-cell { | |
overflow: visible !important; | |
align-content: center !important; | |
} | |
.tabulator-cell:hover { | |
z-index: 1000 !important; | |
} | |
.image-zoom-viewer { | |
display: inline-block; | |
overflow: visible; | |
z-index: 1000; | |
} | |
.image-zoom-viewer::after { | |
content: ""; | |
top: 0; | |
left: 0; | |
width: 100%; | |
height: 100%; | |
pointer-events: none; | |
} | |
.image-zoom-viewer:hover::after { | |
pointer-events: all; | |
} | |
/* When hovering over the container, scale its child (the SVG) */ | |
.tabulator-cell:hover .image-zoom-viewer svg { | |
padding: 3px; | |
position: absolute; | |
background-color: rgba(250, 250, 250, 0.854); | |
box-shadow: 0 0 10px rgba(0, 0, 0, 0.618); | |
border-radius: 3px; | |
transform: scale(3); /* Scale up the SVG */ | |
transition: transform 0.3s ease; | |
pointer-events: none; /* Prevents the SVG from blocking mouse interactions */ | |
z-index: 1000; | |
} | |
""" | |
pn.extension( | |
raw_css=[panel_css], | |
js_files={'panel_custom': 'static/panel.js', '3Dmol': 'static/3Dmol-min.js'}, | |
# js_modules={'3Dmol': 'static/3Dmol-min.js'}, | |
inline=True, | |
) | |
template = pn.template.VanillaTemplate( | |
title=f'DeepSEQreen {job} Report', | |
sidebar=[], | |
favicon='deepseqreen.ico', | |
logo='deepseqreen.svg', | |
header_background='#F3F5F7', | |
header_color='#4372c4', | |
busy_indicator=None, | |
) | |
stats_pane = pn.Row() | |
if unique_df is not None: | |
unique_table = pn.widgets.Tabulator(unique_df, formatters=formatters, sizing_mode='stretch_width', | |
show_index=False, disabled=True, | |
frozen_columns=['Compound ID', 'Compound', 'Target ID']) | |
# if pie_charts: | |
# unique_table.width = 640 | |
stats_pane.append(pn.Column(f'### {unique_entity}', unique_table)) | |
if pie_charts: | |
for score_name, figure_list in pie_charts.items(): | |
stats_pane.append( | |
pn.Column(f'### {category} by Top {score_name}', | |
pn.Tabs(*figure_list, tabs_location='above')) | |
# pn.Card(pn.Row(v), title=f'{category} by Top {k}') | |
) | |
if stats_pane: | |
template.main.append(pn.Card(stats_pane, | |
sizing_mode='stretch_width', title='Summary Statistics', margin=10)) | |
template.main.append( | |
pn.Card(report_table, title=f'{job} Results', # width=1200, | |
margin=10) | |
) | |
template.save(file, title=f'DeepSEQreen {job} Report', resources=INLINE) | |
return file | |
def create_pie_chart(df, category, value, top_k): | |
if category not in df or value not in df: | |
return | |
top_k_df = df.nlargest(top_k, value) | |
category_counts = top_k_df[category].value_counts() | |
data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values}) | |
data['proportion'] = data['value'] / data['value'].sum() | |
# Merge rows with proportion less than 0.2% into one row | |
mask = data['proportion'] < 0.002 | |
if any(mask): | |
merged_row = data[mask].sum() | |
merged_row[category] = '...' | |
data = pd.concat([data[~mask], pd.DataFrame(merged_row).T]) | |
data['angle'] = data['proportion'] * 2 * pi | |
color_dict = {cat: color for cat, color in | |
zip(df[category].unique(), | |
(Category20c_20 * (len(df[category].unique()) // 20 + 1))[:len(df[category].unique())])} | |
color_dict['...'] = '#636363' | |
data['color'] = data[category].map(color_dict) | |
tooltips = [ | |
(f"{category}", f"@{{{category}}}"), | |
("Count", "@value"), | |
("Percentage", "@proportion{0.0%}") | |
] | |
if category == 'Scaffold SMILES' and 'Scaffold' in df.columns: | |
data = data.merge(top_k_df[['Scaffold SMILES', 'Scaffold']].drop_duplicates(), how='left', | |
left_on='Scaffold SMILES', right_on='Scaffold SMILES') | |
tooltips.append(("Scaffold", "<div>@{Scaffold}{safe}</div>")) | |
p = figure(height=384, width=960, name=f"Top {top_k}" if top_k < len(df) else 'All', sizing_mode='stretch_height', | |
toolbar_location=None, tools="hover", tooltips=tooltips, x_range=(-0.4, 0.4)) | |
def truncate_label(label, max_length=60): | |
return label if len(label) <= max_length else label[:max_length] + "..." | |
data['legend_field'] = data[category].apply(truncate_label) | |
p.add_layout(Legend(padding=0, margin=0), 'right') | |
p.wedge(x=0, y=1, radius=0.3, | |
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'), | |
line_color="white", fill_color='color', legend_field='legend_field', source=data) | |
# Limit the number of legend items to 20 and add "..." if there are more than 20 items | |
if len(p.legend.items) > 20: | |
new_legend_items = p.legend.items[:20] | |
new_legend_items.append(LegendItem(label="...")) | |
p.legend.items = new_legend_items | |
p.legend.label_text_font_size = "10pt" | |
p.legend.label_text_font = "courier" | |
p.axis.axis_label = None | |
p.axis.visible = False | |
p.grid.grid_line_color = None | |
p.outline_line_width = 0 | |
p.min_border = 0 | |
p.margin = 0 | |
return p | |
def submit_report(df, score_list, filter_list, opt_list, task, progress=gr.Progress(track_tqdm=True)): | |
df_report = df.copy() | |
try: | |
for filter_name in filter_list: | |
df_report[filter_name] = df_report['Compound'].parallel_apply( | |
lambda x: FILTER_MAP[filter_name](x) if not pd.isna(x) else x) | |
for score_name in score_list: | |
df_report[score_name] = df_report['Compound'].parallel_apply( | |
lambda x: SCORE_MAP[score_name](x) if not pd.isna(x) else x) | |
if opt_list: | |
df_training = pd.read_csv(f'data/complete_{TASK_MAP[task].lower()}_dataset.csv') | |
df_report = apply_advanced_opts(df_report, opt_list, df_training) | |
return (create_html_report(df_report, file=None, task=task), df_report, | |
gr.File(visible=False), gr.File(visible=False)) | |
except Exception as e: | |
gr.Warning(f'Failed to report results due to error: {str(e)}') | |
return None, None, None, None | |
def wrap_text(text, line_length=60): | |
if isinstance(text, str): | |
wrapper = textwrap.TextWrapper(width=line_length) | |
if text.startswith('>'): | |
sections = text.split('>') | |
wrapped_sections = [] | |
for section in sections: | |
if not section: | |
continue | |
lines = section.split('\n') | |
seq_header = lines[0] | |
wrapped_seq = wrapper.fill(''.join(lines[1:])) | |
wrapped_sections.append(f">{seq_header}\n{wrapped_seq}") | |
return '\n'.join(wrapped_sections) | |
else: | |
return wrapper.fill(text) | |
else: | |
return text | |
def unwrap_text(text): | |
return text.strip.replece('\n', '') | |
def drug_library_from_sdf(sdf_path): | |
return PandasTools.LoadSDF( | |
sdf_path, | |
smilesName='X1', molColName='Compound', includeFingerprints=True | |
) | |
def process_target_library_upload(library_upload): | |
if library_upload.endswith('.csv'): | |
df = pd.read_csv(library_upload) | |
elif library_upload.endswith('.fasta'): | |
df = target_library_from_fasta(library_upload) | |
else: | |
raise gr.Error('Currently only CSV and FASTA files are supported as target libraries.') | |
validate_columns(df, ['X2']) | |
return df | |
def process_drug_library_upload(library_upload): | |
if library_upload.endswith('.csv'): | |
df = pd.read_csv(library_upload) | |
elif library_upload.endswith('.sdf'): | |
df = drug_library_from_sdf(library_upload) | |
else: | |
raise gr.Error('Currently only CSV and SDF files are supported as drug libraries.') | |
validate_columns(df, ['X1']) | |
return df | |
def target_library_from_fasta(fasta_path): | |
records = list(SeqIO.parse(fasta_path, "fasta")) | |
id2 = [record.id for record in records] | |
seq = [str(record.seq) for record in records] | |
df = pd.DataFrame({'ID2': id2, 'X2': seq}) | |
return df | |
theme = gr.themes.Base(spacing_size="sm", text_size='md', font=gr.themes.GoogleFont("Roboto")).set( | |
background_fill_primary='#eef3f9', | |
background_fill_secondary='white', | |
checkbox_label_background_fill='#eef3f9', | |
checkbox_label_background_fill_hover='#dfe6f0', | |
checkbox_background_color='white', | |
checkbox_border_color='#4372c4', | |
border_color_primary='#4372c4', | |
border_color_accent='#2e6ab5', | |
button_primary_background_fill='#2e6ab4', | |
button_primary_text_color='white', | |
body_text_color='#28496F', | |
block_background_fill='#fbfcfd', | |
block_title_text_color='#28496F', | |
block_label_text_color='#28496F', | |
block_info_text_color='#505358', | |
block_border_color=None, | |
# input_border_color='#4372c4', | |
# panel_border_color='#4372c4', | |
input_background_fill='#F1F2F4', | |
) | |
with gr.Blocks(theme=theme, title='DeepSEQreen', css=CSS, delete_cache=(3600, 48 * 3600)) as demo: | |
run_state = gr.State(value=False) | |
screen_flag = gr.State(value=False) | |
identify_flag = gr.State(value=False) | |
infer_flag = gr.State(value=False) | |
with gr.Tabs() as tabs: | |
with gr.TabItem(label='Drug Hit Screening', id='Drug Hit Screening'): | |
gr.Markdown(''' | |
# <center>Drug Hit Screening</center> | |
<center> | |
To predict interactions or binding affinities of a single target against a compound library. | |
</center> | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
HelpTip( | |
"Enter (paste) a amino acid sequence below manually or upload a FASTA file. " | |
"If multiple entities are in the FASTA, only the first will be used. " | |
"Alternatively, enter a Uniprot ID or gene symbol with organism and click Query for " | |
"the sequence." | |
) | |
target_input_type = gr.Dropdown( | |
label='Step 1. Select Target Input Type and Input', | |
choices=['Sequence', 'UniProt ID', 'Gene symbol'], | |
info='Enter (paste) a FASTA string below manually or upload a FASTA file.', | |
value='Sequence', | |
scale=4, interactive=True | |
) | |
with gr.Row(): | |
target_id = gr.Textbox(show_label=False, visible=False, | |
interactive=True, scale=4, | |
info='Enter a UniProt ID and query.') | |
target_gene = gr.Textbox( | |
show_label=False, visible=False, | |
interactive=True, scale=4, | |
info='Enter a gene symbol and query. The first record will be used.') | |
target_organism = gr.Textbox( | |
info='Organism scientific name (default: Homo sapiens).', | |
placeholder='Homo sapiens', show_label=False, | |
visible=False, interactive=True, scale=4, ) | |
target_upload_btn = gr.UploadButton(label='Upload a FASTA File', type='binary', | |
visible=True, variant='primary', | |
size='lg') | |
target_paste_markdown = gr.Button(value='OR Paste Your Sequence Below', | |
variant='secondary') | |
target_query_btn = gr.Button(value='Query the Sequence', variant='primary', | |
visible=False, scale=4) | |
# with gr.Row(): | |
# example_uniprot = gr.Button(value='Example: Q16539', elem_classes='example', visible=False) | |
# example_gene = gr.Button(value='Example: MAPK14', elem_classes='example', visible=False) | |
example_fasta = gr.Button(value='Example: MAPK14 (Q16539)', elem_classes='example') | |
target_fasta = gr.Code(label='Input or Display FASTA', interactive=True, lines=5) | |
# with gr.Row(): | |
# with gr.Column(): | |
# with gr.Column(): | |
# gr.File(label='Example FASTA file', | |
# value='data/examples/MAPK14.fasta', interactive=False) | |
with gr.Row(): | |
with gr.Column(min_width=200): | |
HelpTip( | |
"Click Auto-detect to identify the protein family using sequence alignment. " | |
"This optional step allows applying a family-specific model instead of a all-family " | |
"model (general). " | |
"Manually select general if the alignment results are unsatisfactory." | |
) | |
drug_screen_target_family = gr.Dropdown( | |
choices=list(TARGET_FAMILY_MAP.keys()), | |
value='General', | |
label='Step 2. Select Target Family (Optional)', interactive=True) | |
target_family_detect_btn = gr.Button(value='OR Let Us Auto-Detect for You', | |
variant='primary') | |
with gr.Column(min_width=200): | |
HelpTip( | |
"Interaction prediction provides you binding probability score between the target of " | |
"interest and each compound in the library, " | |
"while affinity prediction directly estimates their binding strength measured using " | |
"half maximal inhibitory concentration (IC<sub>50</sub>) in units of nM." | |
) | |
drug_screen_task = gr.Dropdown( | |
list(TASK_MAP.keys()), | |
label='Step 3. Select a Prediction Task', | |
value='Compound-Protein Interaction') | |
with gr.Column(min_width=200): | |
HelpTip( | |
"Select your preferred model, or click Recommend for the best-performing model based " | |
"on the selected task, family, and whether the target was trained. " | |
"Please refer to documentation for detailed benchmark results." | |
) | |
drug_screen_preset = gr.Dropdown( | |
list(PRESET_MAP.keys()), | |
label='Step 4. Select a Preset Model') | |
screen_preset_recommend_btn = gr.Button( | |
value='OR Let Us Recommend for You', variant='primary') | |
with gr.Row(): | |
with gr.Column(): | |
HelpTip( | |
"Select a preset compound library (e.g., DrugBank). " | |
"Alternatively, upload a CSV file with a column named X1 containing compound SMILES, " | |
"or use an SDF file (Max. 10,000 compounds per task). Example CSV and SDF files are " | |
"provided below and can be downloaded by clicking the lower right corner." | |
) | |
drug_library = gr.Dropdown( | |
label='Step 5. Select a Preset Compound Library', | |
choices=list(DRUG_LIBRARY_MAP.keys())) | |
with gr.Row(): | |
gr.File(label='Example SDF compound library', | |
value='data/examples/compound_library.sdf', interactive=False) | |
gr.File(label='Example CSV compound library', | |
value='data/examples/compound_library.csv', interactive=False) | |
drug_library_upload_btn = gr.UploadButton( | |
label='OR Upload Your Own Library', variant='primary') | |
drug_library_upload = gr.File(label='Custom compound library file', visible=False) | |
with gr.Column(): | |
HelpTip(""" | |
<b>Max. Sequence Identity between the Input Target and Targets in the Training Set</b>: | |
this serves as an indicator of the predictioon applicability/reliability – | |
higher similarities indicate more reliable predictions (preferably > 0.85).<br> | |
<b>Max. Tanimoto Similarity between the Hit Compound and Known Ligands of the Input Target</b>: | |
this serves as an indicator of both the confidence level and novelty of the predicted hit compounds – | |
higher similarities suggest greater confidence, while lower Tanimoto similarities may indicate the novelty | |
of the identified hit compounds compared to known drugs or true interacting compounds of the input target.<br> | |
<b>Max. Sequence Identity between the Input Target and Known Targets of Hit Compound</b>: | |
this serves as an additional indicator of the confidence level of the predicted hit compounds – | |
higher identities usually lead to greater confidence in the predictions.<br> | |
""") | |
drug_screen_opts = gr.CheckboxGroup( | |
label="Step 6. Select Advanced Options", | |
value=DRUG_SCRENN_CPI_OPTS[0], | |
choices=DRUG_SCRENN_CPI_OPTS, | |
info="Advanced features - may increase the job computation time. " | |
"See the Help Tip on the right or the Documentation for detailed explanation.", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
drug_screen_email = gr.Textbox( | |
label='Step 7. Input Your Email Address (Optional)', | |
info="Your email address will be used to notify you of the status of your job. " | |
"If you cannot receive the email, please check your spam/junk folder." | |
) | |
with gr.Row(visible=True): | |
with gr.Row(): | |
drug_screen_clr_btn = gr.ClearButton(size='lg') | |
drug_screen_btn = gr.Button(value='SUBMIT THE SCREENING JOB', variant='primary', size='lg') | |
screen_data_for_predict = gr.File(visible=False, file_count="single", type='filepath') | |
with gr.TabItem(label='Target Protein Identification', id='Target Protein Identification'): | |
gr.Markdown(''' | |
# <center>Target Protein Identification</center> | |
<center> | |
To predict interactions or binding affinities of a single compound against a protein library. | |
</center> | |
''') | |
with gr.Column() as identify_page: | |
with gr.Row(): | |
with gr.Column(): | |
HelpTip( | |
"Enter (paste) a compound SMILES below manually or upload a SDF file. " | |
"If multiple entities are in the SDF, only the first will be used. " | |
"SMILES can be obtained by searching for the compound of interest in databases such " | |
"as NCBI, PubChem and and ChEMBL." | |
) | |
compound_type = gr.Dropdown( | |
label='Step 1. Select Compound Input Type and Input', | |
choices=['SMILES', 'SDF'], | |
info='Enter (paste) an SMILES string or upload an SDF file to convert to SMILES.', | |
value='SMILES', | |
interactive=True) | |
compound_upload_btn = gr.UploadButton( | |
label='OR Upload a SDF File', variant='primary', type='binary', visible=False) | |
compound_smiles = gr.Code(label='Input or Display Compound SMILES', interactive=True, lines=5) | |
example_drug = gr.Button(value='Example: Aspirin', elem_classes='example') | |
with gr.Row(): | |
with gr.Column(visible=True): | |
HelpTip( | |
"By default, models trained on all protein families (general) will be applied. " | |
"If you upload a target library containing proteins all in the same family, " | |
"you may manually select a Target Family." | |
) | |
# target_identify_target_family = gr.Dropdown( | |
# choices=['Family-Specific Auto-Recommendation'] + list(TARGET_FAMILY_MAP.keys()), | |
# value='Family-Specific Auto-Recommendation', | |
# label='Step 2. Select Target Family') | |
target_identify_target_family = gr.Dropdown( | |
choices=['General'], | |
value='General', | |
label='Step 2. Select Target Family') | |
with gr.Column(): | |
HelpTip( | |
"Interaction prediction provides you binding probability score between the target of " | |
"interest and each compound in the library, while affinity prediction directly " | |
"estimates their binding strength measured using " | |
"half maximal inhibitory concentration (IC<sub>50</sub>) in units of nM." | |
) | |
target_identify_task = gr.Dropdown( | |
list(TASK_MAP.keys()), | |
label='Step 3. Select a Prediction Task', | |
value='Compound-Protein Interaction') | |
with gr.Column(): | |
HelpTip( | |
"Select your preferred model, or click Recommend for the best-performing model based " | |
"on the selected task and whether the compound was trained. By default, General-trained " | |
"model is used for Target Protein Identification. " | |
"Please refer to the documentation for detailed benchmark results." | |
) | |
# target_identify_preset = gr.Dropdown( | |
# choices=['Family-Specific Auto-Recommendation'] + list(PRESET_MAP.keys()), | |
# value='Family-Specific Auto-Recommendation', | |
# label='Step 4. Select a Preset Model') | |
target_identify_preset = gr.Dropdown( | |
choices=['DeepConvDTI', 'DeepDTA', 'DrugVQA-Seq', 'DrugBAN', 'HyperAttentionDTI', 'MGraphDTA'], | |
value='DrugBAN', | |
label='Step 4. Select a Preset Model') | |
identify_preset_recommend_btn = gr.Button(value='OR Let Us Recommend for You', | |
variant='primary') | |
with gr.Row(): | |
with gr.Column(): | |
HelpTip( | |
"Select a preset target library (e.g., ChEMBL33_human_proteins). " | |
"Alternatively, upload a CSV file with a column named X2 containing target protein " | |
"sequences, or use an FASTA file (Max. 10,000 targets per task). " | |
"Example CSV and SDF files are provided below " | |
"and can be downloaded by clicking the lower right corner." | |
) | |
target_library = gr.Dropdown( | |
label='Step 5. Select a Preset Target Library', | |
choices=list(TARGET_LIBRARY_MAP.keys())) | |
with gr.Row(): | |
gr.File(label='Example FASTA target library', | |
value='data/examples/target_library.fasta', interactive=False) | |
gr.File(label='Example CSV target library', | |
value='data/examples/target_library.csv', interactive=False) | |
target_library_upload_btn = gr.UploadButton( | |
label='OR Upload Your Own Library', variant='primary') | |
target_library_upload = gr.File(label='Custom target library file', visible=False) | |
with gr.Column(): | |
HelpTip(""" | |
<b>Max. Tanimoto Similarity between the Input Compound and Compounds in the Training Set</b>: | |
this serves as an indicator of prediction applicability and reliability – | |
higher similarities indicates more reliable predictions (ideally > 0.85).<br> | |
<b>Max. Sequence Identity between the Identified Target and Known Targets of the Input Compound</b>: | |
this serves as an indicator of prediction confidence for the potential targets – | |
higher similarities typically imply higher confidence levels.<br> | |
<b>Max. Tanimoto Similarity between the Input Compound and Known Ligands of the Identified Target</b>: | |
this serves as an additional indicator of the confidence level in the predicted potential targets – | |
higher similarities usually correspond to greater prediction confidence.<br> | |
""") | |
target_identify_opts = gr.CheckboxGroup( | |
choices=TARGET_IDENTIFY_CPI_OPTS, | |
value=TARGET_IDENTIFY_CPI_OPTS[0], | |
label='Step 6. Select Advanced Options', | |
info="Advanced features - may increase the job computation time. " | |
"See the Help Tip on the right or the Documentation for detailed explanation." | |
) | |
with gr.Row(): | |
with gr.Column(): | |
target_identify_email = gr.Textbox( | |
label='Step 7. Input Your Email Address (Optional)', | |
info="Your email address will be used to notify you of the status of your job. " | |
"If you cannot receive the email, please check your spam/junk folder." | |
) | |
with gr.Row(visible=True): | |
target_identify_clr_btn = gr.ClearButton(size='lg') | |
target_identify_btn = gr.Button(value='SUBMIT THE IDENTIFICATION JOB', variant='primary', | |
size='lg') | |
identify_data_for_predict = gr.File(visible=False, file_count="single", type='filepath') | |
with gr.TabItem(label='Interaction Pair Inference', id='Interaction Pair Inference'): | |
gr.Markdown(''' | |
# <center>Interaction Pair Inference</center> | |
<center>To predict interactions or binding affinities between up to | |
10,000 paired compound-protein data.</center> | |
''') | |
HelpTip( | |
"A custom interation pair dataset can be a CSV file with 2 required columns " | |
"(X1 for smiles and X2 for sequences) " | |
"and optionally 2 ID columns (ID1 for compound ID and ID2 for target ID), " | |
"or generated from a FASTA file containing multiple " | |
"sequences and a SDF file containing multiple compounds. " | |
"Currently, a maximum of 10,000 pairs is supported, " | |
"which means that the size of CSV file or " | |
"the product of the two library sizes should not exceed 10,000." | |
) | |
infer_type = gr.Dropdown( | |
choices=['Upload a CSV file containing paired compound-protein data', | |
'Upload a compound library and a target library'], | |
label='Step 1. Select Pair Input Type and Input', | |
value='Upload a CSV file containing paired compound-protein data') | |
with gr.Column() as pair_upload: | |
gr.File( | |
label="Example CSV dataset", | |
value="data/examples/interaction_pair_inference.csv", | |
interactive=False | |
) | |
with gr.Row(): | |
infer_csv_prompt = gr.Button( | |
value="Upload Your Own Dataset Below", | |
variant='secondary') | |
with gr.Column(): | |
infer_pair = gr.File( | |
label='Upload CSV File Containing Paired Records', | |
file_count="single", | |
type='filepath', | |
visible=True | |
) | |
with gr.Column(visible=False) as pair_generate: | |
with gr.Row(): | |
gr.File( | |
label='Example SDF compound library', | |
value='data/examples/compound_library.sdf', | |
interactive=False | |
) | |
gr.File( | |
label='Example FASTA target library', | |
value='data/examples/target_library.fasta', | |
interactive=False | |
) | |
with gr.Row(): | |
gr.File( | |
label='Example CSV compound library', | |
value='data/examples/compound_library.csv', | |
interactive=False | |
) | |
gr.File( | |
label='Example CSV target library', | |
value='data/examples/target_library.csv', | |
interactive=False | |
) | |
with gr.Row(): | |
infer_library_prompt = gr.Button( | |
value="Upload Your Own Libraries Below", | |
visible=False, | |
variant='secondary' | |
) | |
with gr.Row(): | |
infer_drug = gr.File( | |
label='Upload SDF/CSV File Containing Multiple Compounds', | |
file_count="single", | |
type='filepath' | |
) | |
infer_target = gr.File( | |
label='Upload FASTA/CSV File Containing Multiple Targets', | |
file_count="single", | |
type='filepath' | |
) | |
with gr.Row(): | |
with gr.Column(min_width=200): | |
HelpTip( | |
"By default, models trained on all protein families (general) will be applied. " | |
"If the proteins in the target library of interest " | |
"all belong to the same protein family, manually selecting the family is supported." | |
) | |
pair_infer_target_family = gr.Dropdown( | |
choices=list(TARGET_FAMILY_MAP.keys()), | |
value='General', | |
label='Step 2. Select Target Family (Optional)' | |
) | |
with gr.Column(min_width=200): | |
HelpTip( | |
"Interaction prediction provides you binding probability score " | |
"between the target of interest and each compound in the library, " | |
"while affinity prediction directly estimates their binding strength " | |
"measured using half maximal inhibitory concentration (IC<sub>50</sub>) in units of nM." | |
) | |
pair_infer_task = gr.Dropdown( | |
list(TASK_MAP.keys()), | |
label='Step 3. Select a Prediction Task', | |
value='Compound-Protein Interaction' | |
) | |
with gr.Column(min_width=200): | |
HelpTip( | |
"Select your preferred model. Please refer to documentation for detailed benchmark results." | |
) | |
pair_infer_preset = gr.Dropdown( | |
list(PRESET_MAP.keys()), | |
label='Step 4. Select a Preset Model' | |
) | |
# infer_preset_recommend_btn = gr.Button(value='OR Let Us Recommend for You', | |
# variant='primary') | |
pair_infer_opts = gr.CheckboxGroup(visible=False) | |
with gr.Row(): | |
pair_infer_email = gr.Textbox( | |
label='Step 5. Input Your Email Address (Optional)', | |
info="Your email address will be used to notify you of the status of your job. " | |
"If you cannot receive the email, please check your spam/junk folder.") | |
with gr.Row(visible=True): | |
pair_infer_clr_btn = gr.ClearButton(size='lg') | |
pair_infer_btn = gr.Button(value='SUBMIT THE INFERENCE JOB', variant='primary', size='lg') | |
infer_data_for_predict = gr.File(file_count="single", type='filepath', visible=False) | |
with gr.TabItem(label='Chemical Property Report', id='Chemical Property Report'): | |
gr.Markdown(''' | |
# <center>Chemical Property Report</center> | |
To compute chemical properties for the predictions of Drug Hit Screening, | |
Target Protein Identification, and Interaction Pair Inference. | |
You may also upload your own dataset using a CSV file containing | |
one required column `X1` for compound SMILES. | |
The page shows only a preview report displaying at most 30 records | |
(with top predicted CPI/CPA if reporting results from a prediction job). | |
Please first `Preview` the report, then `Generate` and download a CSV report | |
or an interactive HTML report below if you wish to access the full report. | |
''') | |
raw_df = gr.State(value=pd.DataFrame()) | |
report_df = gr.State(value=pd.DataFrame()) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_for_report = gr.File(interactive=True, type='filepath') | |
report_task = gr.Dropdown(list(TASK_MAP.keys()), visible=False, | |
value='Compound-Protein Interaction', | |
label='Specify the Task Labels in the Uploaded Dataset') | |
with gr.Column(scale=2): | |
with gr.Column(): | |
with gr.Row(): | |
scores = gr.CheckboxGroup(list(SCORE_MAP.keys()), label='Compound Scores') | |
filters = gr.CheckboxGroup(list(FILTER_MAP.keys()), label='Compound Filters') | |
job_opts = gr.CheckboxGroup(visible=False) | |
with gr.Accordion('Report Generate Options', open=True): | |
with gr.Row(): | |
csv_sep = gr.Radio(label='CSV Delimiter', | |
choices=['Comma', 'Tab'], value='Comma') | |
html_opts = gr.CheckboxGroup(label='HTML Report Options', | |
choices=[ | |
'Exclude Molecular Graph', | |
'Exclude Scaffold Graph', | |
'Exclude Pharmacophore 3D' | |
]) | |
with gr.Row(): | |
report_clr_btn = gr.ClearButton(size='lg') | |
analyze_btn = gr.Button('Calculate Properties and Preview', variant='primary', | |
size='lg', interactive=False) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
html_report = gr.HTML() # label='Results', visible=True) | |
ranking_pie_chart = gr.Plot(visible=False) | |
with gr.Row(): | |
with gr.Column(): | |
csv_generate = gr.Button(value='Generate CSV Report', | |
interactive=False, variant='primary') | |
csv_download_file = gr.File(label='Download CSV Report', visible=False) | |
with gr.Column(): | |
html_generate = gr.Button(value='Generate HTML Report', | |
interactive=False, variant='primary') | |
html_download_file = gr.File(label='Download HTML Report', visible=False) | |
with gr.TabItem(label='Prediction Status Lookup', id='Prediction Status Lookup'): | |
gr.Markdown(''' | |
# <center>Prediction Status Lookup</center> | |
To check the status of an in-progress or historical job using the job ID and retrieve the predictions | |
if the job has completed. Note that predictions are only kept for 48 hours upon job completion. | |
You will be redirected to Chemical Property Report for carrying out further analysis and | |
generating the full report when the job is done. If the Lookup fails to respond, please wait for a | |
few minutes and refresh the page to try again. | |
''') | |
with gr.Column(): | |
pred_lookup_id = gr.Textbox( | |
label='Input Your Job ID', placeholder='e.g., e9dfd149-3f5c-48a6-b797-c27d027611ac', | |
info="Your job ID is a UUID4 string that you receive after submitting a job on the " | |
"page or in the email notification.") | |
pred_lookup_btn = gr.Button(value='Lookup the Job Status', variant='primary', visible=True) | |
pred_lookup_stop_btn = gr.Button(value='Stop Tracking', variant='stop', visible=False) | |
pred_lookup_status = gr.Markdown() | |
# retrieve_email = gr.Textbox(label='Step 2. Input Your Email Address', placeholder='e.g., | |
def target_input_type_select(input_type): | |
match input_type: | |
case 'UniProt ID': | |
return [gr.Dropdown(info=''), | |
gr.UploadButton(visible=False), | |
gr.Textbox(visible=True, value=''), | |
gr.Textbox(visible=False, value=''), | |
gr.Textbox(visible=False, value=''), | |
gr.Button(visible=True), | |
gr.Code(value=''), | |
gr.Button(visible=False)] | |
case 'Gene symbol': | |
return [gr.Dropdown(info=''), | |
gr.UploadButton(visible=False), | |
gr.Textbox(visible=False, value=''), | |
gr.Textbox(visible=True, value=''), | |
gr.Textbox(visible=True, value=''), | |
gr.Button(visible=True), | |
gr.Code(value=''), | |
gr.Button(visible=False)] | |
case 'Sequence': | |
return [gr.Dropdown(info='Enter (paste) a FASTA string below manually or upload a FASTA file.'), | |
gr.UploadButton(visible=True), | |
gr.Textbox(visible=False, value=''), | |
gr.Textbox(visible=False, value=''), | |
gr.Textbox(visible=False, value=''), | |
gr.Button(visible=False), | |
gr.Code(value=''), | |
gr.Button(visible=True)] | |
target_input_type.select( | |
fn=target_input_type_select, | |
inputs=target_input_type, | |
outputs=[ | |
target_input_type, target_upload_btn, | |
target_id, target_gene, target_organism, target_query_btn, | |
target_fasta, target_paste_markdown | |
], | |
show_progress='hidden' | |
) | |
def uniprot_query(input_type, uid, gene, organism='Human'): | |
uniprot_endpoint = 'https://rest.uniprot.org/uniprotkb/{query}' | |
fasta_rec = '' | |
match input_type: | |
case 'UniProt ID': | |
query = f"{uid.strip()}.fasta" | |
case 'Gene symbol': | |
organism = organism if organism else 'Human' | |
query = f'search?query=organism_name:{organism.strip()}+AND+gene:{gene.strip()}&format=fasta' | |
try: | |
fasta = session.get(uniprot_endpoint.format(query=query)) | |
fasta.raise_for_status() | |
if fasta.text: | |
fasta_rec = next(SeqIO.parse(io.StringIO(fasta.text), format='fasta')) | |
fasta_rec = f">{fasta_rec.description}\n{fasta_rec.seq}" | |
except Exception as e: | |
raise gr.Warning(f"Failed to query FASTA from UniProt database due to {str(e)}") | |
finally: | |
return fasta_rec | |
def process_fasta_upload(fasta_upload): | |
fasta = '' | |
try: | |
fasta = fasta_upload.decode() | |
except Exception as e: | |
gr.Warning(f"Please upload a valid FASTA file. Error: {str(e)}") | |
return fasta | |
target_upload_btn.upload( | |
fn=process_fasta_upload, inputs=target_upload_btn, outputs=target_fasta | |
).then( | |
fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden' | |
) | |
target_query_btn.click( | |
fn=uniprot_query, inputs=[target_input_type, target_id, target_gene, target_organism], outputs=target_fasta | |
).then( | |
fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden' | |
) | |
def target_family_detect(fasta, progress=gr.Progress(track_tqdm=True)): | |
try: | |
aligner = PairwiseAligner(mode='local') | |
alignment_df = get_fasta_family_map() | |
processed_fasta = process_target_fasta(fasta) | |
# Check for an exact match first | |
exact_match = alignment_df[alignment_df['X2'] == processed_fasta] | |
if not exact_match.empty: | |
row = exact_match.iloc[0] | |
family = str(row['Target Family']).title() | |
return gr.Dropdown( | |
value=family, | |
info=f"Reason: Exact match found with {row['ID2']} from family {family}") | |
# If no exact match, then calculate alignment score | |
def align_score(query): | |
alignment = aligner.align(processed_fasta, query) | |
return alignment.score / max(len(processed_fasta), len(query)) | |
alignment_df['score'] = alignment_df['X2'].parallel_apply(align_score) | |
row = alignment_df.loc[alignment_df['score'].idxmax()] | |
family = str(row['Target Family']).title() | |
return gr.Dropdown(value=family, | |
info=f"Reason: Best sequence identity ({row['score']}) " | |
f"with {row['ID2']} from family {family}") | |
except Exception as e: | |
gr.Warning("Failed to detect the protein family due to error: " + str(e)) | |
target_family_detect_btn.click(fn=target_family_detect, inputs=target_fasta, outputs=drug_screen_target_family) | |
# target_fasta.focus(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden') | |
target_fasta.blur(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden') | |
drug_library_upload_btn.upload(fn=lambda x: [ | |
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(DRUG_LIBRARY_MAP.keys()) + [Path(x.name).name]) | |
], inputs=drug_library_upload_btn, outputs=[drug_library_upload, drug_library]) | |
drug_screen_task.select( | |
fn=lambda task, opts: gr.CheckboxGroup(choices=DRUG_SCRENN_CPA_OPTS) | |
if task == 'Compound-Protein Binding Affinity' else gr.CheckboxGroup( | |
choices=DRUG_SCRENN_CPI_OPTS, value=DRUG_SCRENN_CPI_OPTS[0]), | |
inputs=[drug_screen_task, drug_screen_opts], outputs=drug_screen_opts, | |
show_progress='hidden' | |
) | |
target_identify_task.select( | |
fn=lambda task, opts: gr.CheckboxGroup(choices=TARGET_IDENTIFY_CPA_OPTS) | |
if task == 'Compound-Protein Binding Affinity' else gr.CheckboxGroup( | |
choices=TARGET_IDENTIFY_CPI_OPTS, value=TARGET_IDENTIFY_CPI_OPTS[0]), | |
inputs=[target_identify_task, target_identify_opts], outputs=target_identify_opts, | |
show_progress='hidden' | |
) | |
def example_fill(input_type): | |
return {target_id: 'Q16539', | |
target_gene: 'MAPK14', | |
target_organism: 'Human', | |
target_fasta: """ | |
>sp|Q16539|MK14_HUMAN Mitogen-activated protein kinase 14 OS=Homo sapiens OX=9606 GN=MAPK14 PE=1 SV=3 | |
MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQ | |
SIIHAKRTYRELRLLKHMKHENVIGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQ | |
KLTDDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCELKILDFGLARHTDDEMT | |
GYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVG | |
TPGAELLKKISSESARNYIQSLTQMPKMNFANVFIGANPLAVDLLEKMLVLDSDKRITAA | |
QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES | |
"""} | |
example_fasta.click(fn=example_fill, inputs=target_input_type, outputs=[ | |
target_id, target_gene, target_organism, target_fasta], show_progress='hidden') | |
def screen_recommend_model(fasta, family, task): | |
task = TASK_MAP[task] | |
score = TASK_METRIC_MAP[task] | |
benchmark_df = pd.read_csv(f'data/benchmarks/{task}_test_metrics.csv') | |
if not fasta: | |
gr.Warning('Please enter a valid FASTA for model recommendation.') | |
return [None, family] | |
if family == 'General': | |
seen_targets = get_seen_fastas('General', task)['X2'].values | |
if process_target_fasta(fasta) in seen_targets: | |
scenario = "Seen Target" | |
else: | |
scenario = "Unseen Target" | |
filtered_df = benchmark_df[(benchmark_df['Family'] == 'All Families') | |
& (benchmark_df['Scenario'] == scenario) | |
& (benchmark_df['Type'] == 'General')] | |
else: | |
seen_targets_general = get_seen_fastas('General', task)['X2'].values | |
if process_target_fasta(fasta) in seen_targets_general: | |
scenario_general = "Seen Target" | |
else: | |
scenario_general = "Unseen Target" | |
seen_targets_family = get_seen_fastas(family, task)['X2'].values | |
if process_target_fasta(fasta) in seen_targets_family: | |
scenario_family = "Seen Target" | |
else: | |
scenario_family = "Unseen Target" | |
filtered_df_general = benchmark_df[(benchmark_df['Family'] == family) | |
& (benchmark_df['Scenario'] == scenario_general) | |
& (benchmark_df['Type'] == 'General')] | |
filtered_df_family = benchmark_df[(benchmark_df['Family'] == family) | |
& (benchmark_df['Scenario'] == scenario_family) | |
& (benchmark_df['Type'] == 'Family')] | |
filtered_df = pd.concat([filtered_df_general, filtered_df_family]) | |
row = filtered_df.loc[filtered_df[score].idxmax()] | |
if row['Scenario'] == 'Seen Target': | |
scenario = "Seen Target (>=0.85 sequence identity)" | |
elif row['Scenario'] == 'Unseen Target': | |
scenario = "Unseen Target (<0.85 sequence identity)" | |
return {drug_screen_preset: | |
gr.Dropdown(value=row['Model'], | |
info=f"Reason: {row['Scenario']} in training; we recommend the {row['Type']}-trained " | |
f"model with the best {score} in the {scenario} scenario on {row['Family']}."), | |
drug_screen_target_family: | |
gr.Dropdown(value='General') if row['Type'] == 'General' else gr.Dropdown(value=family)} | |
screen_preset_recommend_btn.click( | |
fn=screen_recommend_model, | |
inputs=[target_fasta, drug_screen_target_family, drug_screen_task], | |
outputs=[drug_screen_preset, drug_screen_target_family], | |
show_progress='hidden' | |
) | |
def compound_input_type_select(input_type): | |
match input_type: | |
case 'SMILES': | |
return gr.Button(visible=False) | |
case 'SDF': | |
return gr.Button(visible=True) | |
compound_type.select(fn=compound_input_type_select, | |
inputs=compound_type, outputs=compound_upload_btn, show_progress='hidden') | |
def compound_upload_process(input_type, input_upload): | |
smiles = '' | |
try: | |
match input_type: | |
case 'SMILES': | |
smiles = input_upload.decode() | |
case 'SDF': | |
suppl = Chem.ForwardSDMolSupplier(io.BytesIO(input_upload)) | |
smiles = Chem.MolToSmiles(next(suppl)) | |
except Exception as e: | |
gr.Warning(f"Please upload a valid {input_type} file. Error: {str(e)}") | |
return smiles | |
compound_upload_btn.upload(fn=compound_upload_process, | |
inputs=[compound_type, compound_upload_btn], | |
outputs=compound_smiles) | |
example_drug.click(fn=lambda: 'CC(=O)Oc1ccccc1C(=O)O', outputs=compound_smiles, show_progress='hidden') | |
target_library_upload_btn.upload(fn=lambda x: [ | |
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(TARGET_LIBRARY_MAP.keys()) + [Path(x.name).name]) | |
], inputs=target_library_upload_btn, outputs=[target_library_upload, target_library]) | |
def identify_recommend_model(smiles, family, task): | |
task = TASK_MAP[task] | |
score = TASK_METRIC_MAP[task] | |
benchmark_df = pd.read_csv(f'data/benchmarks/{task}_test_metrics.csv') | |
if not smiles: | |
gr.Warning('Please enter a valid SMILES for model recommendation.') | |
return None | |
if family == 'Family-Specific Auto-Recommendation': | |
return 'Family-Specific Auto-Recommendation' | |
if family == 'General': | |
seen_compounds = pd.read_csv( | |
f'data/benchmarks/seen_compounds/all_families_full_{task.lower()}_random_split.csv') | |
family = 'All Families' | |
else: | |
seen_compounds = pd.read_csv( | |
f'data/benchmarks/seen_compounds/{TARGET_FAMILY_MAP[family.title()]}_{task.lower()}_random_split.csv') | |
if rdkit_canonicalize(smiles) in seen_compounds['X1'].values: | |
scenario = "Seen Compound" | |
else: | |
scenario = "Unseen Compound" | |
filtered_df = benchmark_df[(benchmark_df['Family'] == family) | |
& (benchmark_df['Scenario'] == scenario) | |
& (benchmark_df['Type'] == 'General')] | |
row = filtered_df.loc[filtered_df[score].idxmax()] | |
return gr.Dropdown(value=row['Model'], | |
info=f"Reason: {scenario} in training; choosing the model " | |
f"with the best {score} in the {scenario} scenario.") | |
identify_preset_recommend_btn.click(fn=identify_recommend_model, | |
inputs=[compound_smiles, target_identify_target_family, target_identify_task], | |
outputs=target_identify_preset, show_progress='hidden') | |
def infer_type_change(upload_type): | |
match upload_type: | |
case "Upload a compound library and a target library": | |
return { | |
pair_upload: gr.Column(visible=False), | |
pair_generate: gr.Column(visible=True), | |
infer_pair: None, | |
infer_drug: None, | |
infer_target: None, | |
infer_csv_prompt: gr.Button(visible=False), | |
infer_library_prompt: gr.Button(visible=True), | |
} | |
case "Upload a CSV file containing paired compound-protein data": | |
return { | |
pair_upload: gr.Column(visible=True), | |
pair_generate: gr.Column(visible=False), | |
infer_pair: None, | |
infer_drug: None, | |
infer_target: None, | |
infer_csv_prompt: gr.Button(visible=True), | |
infer_library_prompt: gr.Button(visible=False), | |
} | |
infer_type.select(fn=infer_type_change, inputs=infer_type, | |
outputs=[pair_upload, pair_generate, infer_pair, infer_drug, infer_target, | |
infer_csv_prompt, infer_library_prompt], | |
show_progress='hidden') | |
def common_input_validate(state, preset, email, request): | |
gr.Info('Start processing inputs...') | |
if not preset: | |
raise gr.Error('Please select a model.') | |
if email: | |
try: | |
email_info = validate_email(email, check_deliverability=False) | |
email = email_info.normalized | |
except EmailNotValidError as e: | |
raise gr.Error(f"Invalid email address: {str(e)}.") | |
if state: | |
raise gr.Error(f"You already have a running prediction job (ID: {state['id']}) under this session. " | |
"Please wait for it to complete before submitting another job.") | |
if check := check_user_running_job(email, request): | |
raise gr.Error(check) | |
return state, preset, email | |
def common_job_initiate(job_id, job_type, email, request, task): | |
gr.Info('Finished processing inputs. Initiating the prediction job... ' | |
'You will be redirected to Prediction Status Lookup once the job has been submitted.') | |
job_info = {'id': job_id, | |
'type': job_type, | |
'task': task, | |
'status': 'RUNNING', | |
'email': email, | |
'ip': request.headers.get('x-forwarded-for', request.client.host), | |
'cookies': dict(request.cookies), | |
'start_time': time(), | |
'end_time': None, | |
'expiry_time': None, | |
'error': None} | |
# db.insert(job_info) | |
return job_info | |
def drug_screen_validate(fasta, library, library_upload, preset, task, email, state, | |
request: gr.Request, progress=gr.Progress(track_tqdm=True)): | |
state, preset, email = common_input_validate(state, preset, email, request) | |
fasta = process_target_fasta(fasta) | |
err = validate_seq_str(fasta, FASTA_PAT) | |
if err: | |
raise gr.Error(f'Found error(s) in your Target FASTA input: {err}') | |
if not library: | |
raise gr.Error('Please select or upload a compound library.') | |
if library in DRUG_LIBRARY_MAP.keys(): | |
screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library])) | |
else: | |
screen_df = process_drug_library_upload(library_upload) | |
if len(screen_df) >= DATASET_MAX_LEN: | |
raise gr.Error(f'The uploaded compound library has more records ' | |
f'than the allowed maximum {DATASET_MAX_LEN}.') | |
screen_df['X2'] = fasta | |
job_id = str(uuid4()) | |
temp_file = Path(f'{SERVER_DATA_DIR}/{job_id}_input.csv').resolve() | |
screen_df.to_csv(temp_file, index=False, na_rep='') | |
if temp_file.is_file(): | |
job_info = common_job_initiate(job_id, 'Drug Hit Screening', email, request, task) | |
return {screen_data_for_predict: str(temp_file), | |
run_state: job_info} | |
else: | |
raise gr.Error('System failed to create temporary files. Please try again later.') | |
def target_identify_validate(smiles, library, library_upload, preset, task, email, state, | |
request: gr.Request, progress=gr.Progress(track_tqdm=True)): | |
state, preset, email = common_input_validate(state, preset, email, request) | |
smiles = smiles.strip() | |
err = validate_seq_str(smiles, SMILES_PAT) | |
if err: | |
raise gr.Error(f'Found error(s) in your Compound SMILES input: {err}') | |
if not library: | |
raise gr.Error('Please select or upload a target library.') | |
if library in TARGET_LIBRARY_MAP.keys(): | |
identify_df = pd.read_csv(Path('data/target_libraries', TARGET_LIBRARY_MAP[library])) | |
else: | |
identify_df = process_target_library_upload(library_upload) | |
if len(identify_df) >= DATASET_MAX_LEN: | |
raise gr.Error(f'The uploaded target library has more records ' | |
f'than the allowed maximum {DATASET_MAX_LEN}.') | |
identify_df['X1'] = smiles | |
job_id = str(uuid4()) | |
temp_file = Path(f'{SERVER_DATA_DIR}/{job_id}_input.csv').resolve() | |
identify_df.to_csv(temp_file, index=False, na_rep='') | |
if temp_file.is_file(): | |
job_info = common_job_initiate(job_id, 'Target Protein Identification', email, request, task) | |
return {identify_data_for_predict: str(temp_file), | |
run_state: job_info} | |
else: | |
raise gr.Error('System failed to create temporary files. Please try again later.') | |
def pair_infer_validate(drug_target_pair_upload, drug_upload, target_upload, preset, task, email, state, | |
request: gr.Request, progress=gr.Progress(track_tqdm=True)): | |
state, preset, email = common_input_validate(state, preset, email, request) | |
job_id = str(uuid4()) | |
if drug_target_pair_upload: | |
infer_df = pd.read_csv(drug_target_pair_upload) | |
validate_columns(infer_df, ['X1', 'X2']) | |
infer_df['X1_ERR'] = infer_df['X1'].parallel_apply( | |
validate_seq_str, regex=SMILES_PAT) | |
if not infer_df['X1_ERR'].isna().all(): | |
raise ValueError( | |
f"Encountered invalid SMILES:\n{infer_df[~infer_df['X1_ERR'].isna()][['X1', 'X1_ERR']]}") | |
infer_df['X2_ERR'] = infer_df['X2'].parallel_apply( | |
validate_seq_str, regex=FASTA_PAT) | |
if not infer_df['X2_ERR'].isna().all(): | |
raise ValueError( | |
f"Encountered invalid FASTA:\n{infer_df[~infer_df['X2_ERR'].isna()][['X2', 'X2_ERR']]}") | |
temp_file = Path(drug_target_pair_upload).resolve() | |
elif drug_upload and target_upload: | |
drug_df = process_drug_library_upload(drug_upload) | |
target_df = process_target_library_upload(target_upload) | |
drug_df.drop_duplicates(subset=['X1'], inplace=True) | |
target_df.drop_duplicates(subset=['X2'], inplace=True) | |
infer_df = pd.DataFrame(list(itertools.product(drug_df['X1'], target_df['X2'])), | |
columns=['X1', 'X2']) | |
infer_df = infer_df.merge(drug_df, on='X1').merge(target_df, on='X2') | |
if len(infer_df) >= DATASET_MAX_LEN: | |
raise gr.Error(f'The uploaded/generated compound-protein pair dataset has more records ' | |
f'than the allowed maximum {DATASET_MAX_LEN}.') | |
temp_file = Path(f'{SERVER_DATA_DIR}/{job_id}_input.csv').resolve() | |
infer_df.to_csv(temp_file, index=False, na_rep='') | |
else: | |
raise gr.Error('Should upload a compound-protein pair dataset, or ' | |
'upload both a compound library and a target library.') | |
if temp_file.is_file(): | |
job_info = common_job_initiate(job_id, 'Interaction Pair Inference', email, request, task) | |
return {infer_data_for_predict: str(temp_file), | |
run_state: job_info} | |
else: | |
raise gr.Error('System failed to create temporary files. Please try again later.') | |
def fill_job_id(job_info): | |
try: | |
return job_info['id'] | |
except Exception as e: | |
gr.Warning(f'Failed to fetch job ID due to error: {str(e)}') | |
return '' | |
drug_screen_click = drug_screen_btn.click( | |
fn=drug_screen_validate, | |
inputs=[target_fasta, drug_library, drug_library_upload, drug_screen_preset, drug_screen_task, | |
drug_screen_email, run_state], | |
outputs=[screen_data_for_predict, run_state], | |
concurrency_limit=2, | |
) | |
drug_screen_lookup = drug_screen_click.success( | |
fn=lambda: gr.Tabs(selected='Prediction Status Lookup'), outputs=[tabs], | |
).then( | |
fn=fill_job_id, inputs=[run_state], outputs=[pred_lookup_id] | |
).then( | |
fn=lookup_job, | |
inputs=[pred_lookup_id], | |
outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report], | |
show_progress='minimal', | |
concurrency_limit=100, | |
) | |
# drug_screen_click.success( | |
# fn=send_email, | |
# inputs=[run_state] | |
# ) | |
drug_screen_click.success( | |
fn=submit_predict, | |
inputs=[screen_data_for_predict, drug_screen_task, drug_screen_preset, | |
drug_screen_target_family, drug_screen_opts, run_state, ], | |
outputs=[run_state, ] | |
) | |
drug_screen_clr_btn.click( | |
lambda: ['General'] + [[]] + [None] * 5, | |
outputs=[drug_screen_target_family, drug_screen_opts, | |
target_fasta, drug_screen_preset, drug_library, drug_library_upload, drug_screen_email], | |
show_progress='hidden' | |
) | |
target_identify_clr_btn.click( | |
lambda: ['General'] + [[]] + [None] * 5, | |
outputs=[target_identify_target_family, target_identify_opts, | |
compound_smiles, target_identify_preset, target_library, target_library_upload, target_identify_email], | |
show_progress='hidden' | |
) | |
pair_infer_clr_btn.click( | |
lambda: ['General'] + [None] * 5, | |
outputs=[pair_infer_target_family, | |
infer_pair, infer_drug, infer_target, pair_infer_preset, pair_infer_email], | |
show_progress='hidden' | |
) | |
report_clr_btn.click( | |
lambda: [[]] * 3 + [None] * 3 + | |
[gr.Button(interactive=False)] * 3 + | |
[gr.File(visible=False, value=None)] * 2 + | |
[gr.Dropdown(visible=False, value=None), gr.HTML(value=''), gr.CheckboxGroup(visible=False)], | |
outputs=[ | |
scores, filters, html_opts, | |
file_for_report, raw_df, report_df, | |
csv_generate, html_generate, analyze_btn, | |
csv_download_file, html_download_file, | |
report_task, html_report, job_opts | |
], | |
show_progress='hidden' | |
) | |
def update_preset(family, preset): | |
if family == 'Family-Specific Auto-Recommendation': | |
return 'Family-Specific Auto-Recommendation' | |
elif preset == 'Family-Specific Auto-Recommendation': | |
return None | |
else: | |
return preset | |
def update_family(family, preset): | |
if preset == 'Family-Specific Auto-Recommendation': | |
return 'Family-Specific Auto-Recommendation' | |
elif family == 'Family-Specific Auto-Recommendation': | |
return None | |
else: | |
return family | |
target_identify_target_family.change( | |
fn=update_preset, inputs=[target_identify_target_family, target_identify_preset], | |
outputs=target_identify_preset, show_progress='hidden') | |
target_identify_preset.change( | |
fn=update_family, inputs=[target_identify_target_family, target_identify_preset], | |
outputs=target_identify_target_family, show_progress='hidden') | |
target_identify_click = target_identify_btn.click( | |
fn=target_identify_validate, | |
inputs=[compound_smiles, target_library, target_library_upload, target_identify_preset, target_identify_task, | |
target_identify_email, run_state], | |
outputs=[identify_data_for_predict, run_state], | |
concurrency_limit=2, | |
) | |
target_identify_lookup = target_identify_click.success( | |
fn=lambda: gr.Tabs(selected='Prediction Status Lookup'), outputs=[tabs], | |
).then( | |
fn=fill_job_id, inputs=[run_state], outputs=[pred_lookup_id] | |
).then( | |
fn=lookup_job, | |
inputs=[pred_lookup_id], | |
outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report], | |
show_progress='minimal', | |
concurrency_limit=100 | |
) | |
# target_identify_click.success( | |
# fn=send_email, | |
# inputs=[run_state] | |
# ) | |
target_identify_click.success( | |
fn=submit_predict, | |
inputs=[identify_data_for_predict, target_identify_task, target_identify_preset, | |
target_identify_target_family, target_identify_opts, run_state, ], # , target_identify_email], | |
outputs=[run_state, ] | |
) | |
pair_infer_click = pair_infer_btn.click( | |
fn=pair_infer_validate, | |
inputs=[infer_pair, infer_drug, infer_target, pair_infer_preset, pair_infer_task, | |
pair_infer_email, run_state], | |
outputs=[infer_data_for_predict, run_state], | |
concurrency_limit=2, | |
) | |
pair_infer_lookup = pair_infer_click.success( | |
fn=lambda: gr.Tabs(selected='Prediction Status Lookup'), outputs=[tabs], | |
).then( | |
fn=fill_job_id, inputs=[run_state], outputs=[pred_lookup_id] | |
).then( | |
fn=lookup_job, | |
inputs=[pred_lookup_id], | |
outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report], | |
show_progress='minimal', | |
concurrency_limit=100 | |
) | |
# pair_infer_click.success( | |
# fn=send_email, | |
# inputs=[run_state] | |
# ) | |
pair_infer_click.success( | |
fn=submit_predict, | |
inputs=[infer_data_for_predict, pair_infer_task, pair_infer_preset, | |
pair_infer_target_family, pair_infer_opts, run_state, ], # , pair_infer_email], | |
outputs=[run_state, ] | |
) | |
pred_lookup_click = pred_lookup_btn.click( | |
fn=lookup_job, | |
inputs=[pred_lookup_id], | |
outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report], | |
show_progress='minimal', | |
cancels=[drug_screen_lookup, target_identify_lookup, pair_infer_lookup], | |
concurrency_limit=100, | |
) | |
pred_lookup_stop_btn.click( | |
fn=lambda: [gr.Button(visible=True), gr.Button(visible=False)], | |
outputs=[pred_lookup_btn, pred_lookup_stop_btn], | |
cancels=[pred_lookup_click, drug_screen_lookup, target_identify_lookup, pair_infer_lookup], | |
concurrency_limit=None, | |
) | |
def inquire_task(df): | |
if 'Y^' in df.columns: | |
label = 'predicted CPI/CPA labels (`Y^`)' | |
return {report_task: gr.Dropdown(visible=True, | |
info=f'Found {label} in your uploaded dataset. ' | |
'Is it compound-protein interaction or binding affinity?'), | |
html_report: ''} | |
else: | |
return {report_task: gr.Dropdown(visible=False)} | |
report_df_change = file_for_report.change( | |
fn=update_df, inputs=file_for_report, outputs=[ | |
html_report, raw_df, report_df, analyze_btn, report_task, job_opts | |
], | |
concurrency_limit=100, | |
).success( | |
fn=lambda: [gr.Button(interactive=True)] * 3 + | |
[gr.File(visible=False, value=None)] * 2, | |
outputs=[ | |
csv_generate, html_generate, analyze_btn, csv_download_file, html_download_file | |
], | |
) | |
file_for_report.upload( | |
# fn=update_df, inputs=file_for_report, outputs=[ | |
# html_report, raw_df, report_df, analyze_btn, report_task, job_opts | |
# ], | |
# cancels=[report_df_change], | |
# concurrency_limit=100, | |
# ).success( | |
fn=inquire_task, inputs=[raw_df], | |
outputs=[report_task, html_report], | |
) | |
file_for_report.clear( | |
fn=lambda: [gr.Button(interactive=False)] * 3 + | |
[gr.File(visible=False, value=None)] * 2 + | |
[gr.Dropdown(visible=False, value=None), '', gr.CheckboxGroup(visible=False)], | |
cancels=[report_df_change], | |
outputs=[ | |
csv_generate, html_generate, analyze_btn, | |
csv_download_file, html_download_file, | |
report_task, html_report, job_opts | |
] | |
) | |
analyze_btn.click( | |
fn=submit_report, inputs=[raw_df, scores, filters, job_opts, report_task], outputs=[ | |
html_report, report_df, csv_download_file, html_download_file] | |
).success( | |
fn=lambda: [gr.Button(interactive=True)] * 2, | |
outputs=[csv_generate, html_generate], | |
concurrency_limit=100, | |
) | |
def create_csv_report_file(df, file_report, task, sep, progress=gr.Progress(track_tqdm=True)): | |
csv_sep_map = { | |
'Comma': ',', | |
'Tab': '\t', | |
} | |
y_colname = 'Y^' | |
if isinstance(task, str): | |
if task == 'Compound-Protein Interaction': | |
y_colname = 'Y_prob' | |
elif task == 'Compound-Protein Binding Affinity': | |
y_colname = 'Y_IC50' | |
try: | |
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | |
filename = f"{SERVER_DATA_DIR}/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.csv" | |
df.rename(columns={'Y^': y_colname}).drop( | |
labels=['Compound', 'Scaffold'], axis=1 | |
).to_csv(filename, index=False, na_rep='', sep=csv_sep_map[sep]) | |
return gr.File(filename, visible=True) | |
except Exception as e: | |
gr.Warning(f"Failed to generate CSV due to error: {str(e)}") | |
return None | |
def create_html_report_file(df, file_report, task, opts, progress=gr.Progress(track_tqdm=True)): | |
try: | |
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | |
filename = f"{SERVER_DATA_DIR}/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.html" | |
create_html_report(df, filename, task, opts) | |
return gr.File(filename, visible=True) | |
except Exception as e: | |
gr.Warning(f"Failed to generate HTML due to error: {str(e)}") | |
return None | |
# html_report.change(lambda: [gr.Button(visible=True)] * 2, outputs=[csv_generate, html_generate]) | |
csv_generate.click( | |
lambda: gr.File(visible=True), outputs=csv_download_file, | |
).then( | |
fn=create_csv_report_file, inputs=[report_df, file_for_report, report_task, csv_sep], | |
outputs=csv_download_file, show_progress='full' | |
) | |
html_generate.click( | |
lambda: gr.File(visible=True), outputs=html_download_file, | |
).then( | |
fn=create_html_report_file, inputs=[report_df, file_for_report, report_task, html_opts], | |
outputs=html_download_file, show_progress='full' | |
) | |
if __name__ == "__main__": | |
pandarallel.initialize() | |
hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference") | |
session = requests.Session() | |
ADAPTER = HTTPAdapter(max_retries=Retry(total=5, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504])) | |
session.mount('http://', ADAPTER) | |
session.mount('https://', ADAPTER) | |
db = TinyDB(f'{SERVER_DATA_DIR}/db.json') | |
# Set all RUNNING jobs to FAILED at TinyDB initialization | |
Job = Query() | |
jobs = db.all() | |
for job in jobs: | |
if job['status'] == 'RUNNING': | |
db.update({'status': 'FAILED'}, Job.id == job['id']) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(check_expiry, 'interval', hours=1, timezone=pytz.utc) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=None, max_size=10).launch(show_api=False) | |