Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -758,6 +758,7 @@ def submit_predict(predict_filepath, task, preset, target_family, opts, job_info
|
|
758 |
task_file_abbr = {'Compound-Protein Interaction': 'CPI', 'Compound-Protein Binding Affinity': 'CPA'}
|
759 |
predictions_file = None
|
760 |
df_training = pd.read_csv(f'data/complete_{TASK_MAP[task].lower()}_dataset.csv')
|
|
|
761 |
orig_df = pd.read_csv(predict_filepath)
|
762 |
alignment_df = get_fasta_family_map()
|
763 |
prediction_df = pd.DataFrame()
|
@@ -791,10 +792,16 @@ def submit_predict(predict_filepath, task, preset, target_family, opts, job_info
|
|
791 |
orig_df['Target Family'] = orig_df['Target Family'].str.capitalize()
|
792 |
detect_family.cache_clear()
|
793 |
|
794 |
-
orig_df
|
|
|
|
|
795 |
annotated_df = orig_df[~orig_df['Y'].isna()].copy()
|
796 |
annotated_df.rename(columns={'Y': 'Y^'}, inplace=True)
|
797 |
annotated_df['Source'] = 'Database'
|
|
|
|
|
|
|
|
|
798 |
# Save the unannotated data
|
799 |
unannotated_df = orig_df[orig_df['Y'].isna()].drop(['Y'], axis=1)
|
800 |
if not unannotated_df.empty:
|
@@ -804,7 +811,7 @@ def submit_predict(predict_filepath, task, preset, target_family, opts, job_info
|
|
804 |
status = "COMPLETED"
|
805 |
return {run_state: False}
|
806 |
|
807 |
-
columns_to_drop = ['ID1', 'Compound', 'Scaffold', 'Scaffold SMILES', 'ID2', 'Y', 'Y^']
|
808 |
columns_to_drop = [col for col in columns_to_drop if col in orig_df.columns]
|
809 |
orig_df.drop(columns_to_drop, axis=1, inplace=True)
|
810 |
|
@@ -842,7 +849,7 @@ def submit_predict(predict_filepath, task, preset, target_family, opts, job_info
|
|
842 |
subset.to_csv(predict_subset_filepath, index=False, na_rep='')
|
843 |
|
844 |
seen_compounds = get_seen_smiles(family, task_value)['X1'].values
|
845 |
-
if subset['X1'].iloc[0] in seen_compounds:
|
846 |
scenario = "Seen Compound"
|
847 |
else:
|
848 |
scenario = "Unseen Compound"
|
@@ -852,7 +859,7 @@ def submit_predict(predict_filepath, task, preset, target_family, opts, job_info
|
|
852 |
& (benchmark_df['Type'] == 'Family')]
|
853 |
|
854 |
seen_compounds = get_seen_smiles('General', task_value)['X1'].values
|
855 |
-
if subset['X1'].iloc[0] in seen_compounds:
|
856 |
scenario = "Seen Compound"
|
857 |
else:
|
858 |
scenario = "Unseen Compound"
|
@@ -1638,7 +1645,7 @@ with gr.Blocks(theme=theme, title='DeepSEQreen', css=CSS, delete_cache=(3600, 48
|
|
1638 |
)
|
1639 |
target_identify_target_family = gr.Dropdown(
|
1640 |
choices=['Family-Specific Auto-Recommendation'] + list(TARGET_FAMILY_MAP.keys()),
|
1641 |
-
value='
|
1642 |
label='Step 2. Select Target Family')
|
1643 |
with gr.Column():
|
1644 |
HelpTip(
|
@@ -1660,7 +1667,8 @@ with gr.Blocks(theme=theme, title='DeepSEQreen', css=CSS, delete_cache=(3600, 48
|
|
1660 |
"Please refer to the documentation for detailed benchmark results."
|
1661 |
)
|
1662 |
target_identify_preset = gr.Dropdown(
|
1663 |
-
['Family-Specific Auto-Recommendation'] + list(PRESET_MAP.keys()),
|
|
|
1664 |
label='Step 4. Select a Preset Model')
|
1665 |
identify_preset_recommend_btn = gr.Button(value='OR Let Us Recommend for You',
|
1666 |
variant='primary')
|
|
|
758 |
task_file_abbr = {'Compound-Protein Interaction': 'CPI', 'Compound-Protein Binding Affinity': 'CPA'}
|
759 |
predictions_file = None
|
760 |
df_training = pd.read_csv(f'data/complete_{TASK_MAP[task].lower()}_dataset.csv')
|
761 |
+
df_training['X1^'] = df_training['X1']
|
762 |
orig_df = pd.read_csv(predict_filepath)
|
763 |
alignment_df = get_fasta_family_map()
|
764 |
prediction_df = pd.DataFrame()
|
|
|
792 |
orig_df['Target Family'] = orig_df['Target Family'].str.capitalize()
|
793 |
detect_family.cache_clear()
|
794 |
|
795 |
+
orig_df['X1^'] = orig_df['X1'].parallel_apply(rdkit_canonicalize)
|
796 |
+
|
797 |
+
orig_df = orig_df.merge(df_training[['X1^', 'X2', 'Y']], on=['X1^', 'X2'], how='left', indicator=False)
|
798 |
annotated_df = orig_df[~orig_df['Y'].isna()].copy()
|
799 |
annotated_df.rename(columns={'Y': 'Y^'}, inplace=True)
|
800 |
annotated_df['Source'] = 'Database'
|
801 |
+
columns_to_drop = ['X1^', 'Compound', 'Scaffold', 'Scaffold SMILES']
|
802 |
+
columns_to_drop = [col for col in columns_to_drop if col in annotated_df.columns]
|
803 |
+
annotated_df.drop(columns_to_drop, axis=1, inplace=True)
|
804 |
+
|
805 |
# Save the unannotated data
|
806 |
unannotated_df = orig_df[orig_df['Y'].isna()].drop(['Y'], axis=1)
|
807 |
if not unannotated_df.empty:
|
|
|
811 |
status = "COMPLETED"
|
812 |
return {run_state: False}
|
813 |
|
814 |
+
columns_to_drop = ['ID1', 'X1^', 'Compound', 'Scaffold', 'Scaffold SMILES', 'ID2', 'Y', 'Y^']
|
815 |
columns_to_drop = [col for col in columns_to_drop if col in orig_df.columns]
|
816 |
orig_df.drop(columns_to_drop, axis=1, inplace=True)
|
817 |
|
|
|
849 |
subset.to_csv(predict_subset_filepath, index=False, na_rep='')
|
850 |
|
851 |
seen_compounds = get_seen_smiles(family, task_value)['X1'].values
|
852 |
+
if subset['X1^'].iloc[0] in seen_compounds:
|
853 |
scenario = "Seen Compound"
|
854 |
else:
|
855 |
scenario = "Unseen Compound"
|
|
|
859 |
& (benchmark_df['Type'] == 'Family')]
|
860 |
|
861 |
seen_compounds = get_seen_smiles('General', task_value)['X1'].values
|
862 |
+
if subset['X1^'].iloc[0] in seen_compounds:
|
863 |
scenario = "Seen Compound"
|
864 |
else:
|
865 |
scenario = "Unseen Compound"
|
|
|
1645 |
)
|
1646 |
target_identify_target_family = gr.Dropdown(
|
1647 |
choices=['Family-Specific Auto-Recommendation'] + list(TARGET_FAMILY_MAP.keys()),
|
1648 |
+
value='Family-Specific Auto-Recommendation',
|
1649 |
label='Step 2. Select Target Family')
|
1650 |
with gr.Column():
|
1651 |
HelpTip(
|
|
|
1667 |
"Please refer to the documentation for detailed benchmark results."
|
1668 |
)
|
1669 |
target_identify_preset = gr.Dropdown(
|
1670 |
+
choices=['Family-Specific Auto-Recommendation'] + list(PRESET_MAP.keys()),
|
1671 |
+
value='Family-Specific Auto-Recommendation',
|
1672 |
label='Step 4. Select a Preset Model')
|
1673 |
identify_preset_recommend_btn = gr.Button(value='OR Let Us Recommend for You',
|
1674 |
variant='primary')
|