Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload 174 files
Browse files- .gitattributes +2 -0
- app.py +978 -210
- data/drug_libraries/drugbank_human_py_annot.csv +3 -0
- data/target_libraries/ChEMBL33_all_spe_single_prot_info.csv +0 -0
- deepscreen/__init__.py +2 -2
- deepscreen/__pycache__/__init__.cpython-311.pyc +0 -0
- deepscreen/__pycache__/train.cpython-311.pyc +0 -0
- deepscreen/data/__pycache__/dti.cpython-311.pyc +0 -0
- deepscreen/data/dti.py +67 -23
- deepscreen/data/featurizers/__pycache__/__init__.cpython-311.pyc +0 -0
- deepscreen/data/featurizers/__pycache__/categorical.cpython-311.pyc +0 -0
- deepscreen/data/featurizers/__pycache__/graph.cpython-311.pyc +0 -0
- deepscreen/data/featurizers/__pycache__/token.cpython-311.pyc +0 -0
- deepscreen/data/featurizers/categorical.py +15 -15
- deepscreen/data/featurizers/monn.py +1 -1
- deepscreen/data/featurizers/token.py +18 -14
- deepscreen/data/utils/__pycache__/collator.cpython-311.pyc +0 -0
- deepscreen/data/utils/__pycache__/label.cpython-311.pyc +0 -0
- deepscreen/data/utils/__pycache__/split.cpython-311.pyc +0 -0
- deepscreen/data/utils/collator.py +94 -43
- deepscreen/data/utils/label.py +1 -0
- deepscreen/gui/test.py +114 -0
- deepscreen/models/__pycache__/dti.cpython-311.pyc +0 -0
- deepscreen/models/dti.py +1 -1
- deepscreen/models/loss/__pycache__/multitask_loss.cpython-311.pyc +0 -0
- deepscreen/models/metrics/bedroc.py +3 -0
- deepscreen/models/metrics/ci.py +39 -0
- deepscreen/models/metrics/ef.py +4 -1
- deepscreen/models/metrics/hit_rate.py +3 -0
- deepscreen/models/metrics/rie.py +9 -6
- deepscreen/models/predictors/drug_vqa.py +4 -1
- deepscreen/models/predictors/transformer_cpi.py +26 -66
- deepscreen/models/predictors/transformer_cpi_2.py +2 -3
- deepscreen/utils/__pycache__/hydra.cpython-311.pyc +0 -0
- deepscreen/utils/hydra.py +46 -36
- resources/checkpoints/deep_dta-binary-general.ckpt +3 -0
- resources/checkpoints/deep_dta-binary-general.ckpt.bak +3 -0
- resources/vocabs/drug_vqa/combinedVoc-wholeFour.voc +0 -1
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data/drug_libraries/drugbank_human_py_annot.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
+
resources/checkpoints/deep_dta-binary-general.ckpt.bak filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,53 +1,207 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import pathlib
|
4 |
from pathlib import Path
|
5 |
import sys
|
6 |
|
|
|
|
|
7 |
import gradio as gr
|
|
|
8 |
import pandas as pd
|
|
|
|
|
|
|
9 |
from rdkit import Chem
|
10 |
-
from rdkit.Chem import RDConfig, Descriptors, Lipinski, Crippen
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
12 |
from deepscreen.predict import predict
|
13 |
|
14 |
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
|
15 |
import sascorer
|
16 |
|
17 |
ROOT = Path.cwd()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
def sa_score(row):
|
28 |
-
return sascorer.calculateScore(
|
|
|
29 |
|
30 |
def mw(row):
|
31 |
-
return Chem.Descriptors.MolWt(
|
|
|
32 |
|
33 |
def hbd(row):
|
34 |
-
return Lipinski.NumHDonors(
|
|
|
35 |
|
36 |
def hba(row):
|
37 |
-
return Lipinski.NumHAcceptors(
|
|
|
38 |
|
39 |
def logp(row):
|
40 |
-
return Crippen.MolLogP(
|
|
|
41 |
|
42 |
SCORE_MAP = {
|
43 |
'SAscore': sa_score,
|
44 |
-
'RAscore': None,
|
45 |
-
'SCScore': None,
|
46 |
-
'LogP': logp,
|
47 |
-
'MW': mw,
|
48 |
-
'HBD': hbd,
|
49 |
-
'HBA': hba,
|
50 |
-
'TopoPSA': None,
|
51 |
}
|
52 |
|
53 |
FILTER_MAP = {
|
@@ -64,36 +218,36 @@ TASK_MAP = {
|
|
64 |
|
65 |
PRESET_MAP = {
|
66 |
'DeepDTA': 'deep_dta',
|
67 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
}
|
69 |
|
70 |
TARGET_FAMILY_MAP = {
|
71 |
-
'
|
72 |
-
'
|
73 |
-
'
|
74 |
-
'
|
75 |
-
'
|
76 |
-
'
|
77 |
-
'Nuclear receptors': 'nuclear_receptors',
|
78 |
-
'Ion channels': 'ion_channels',
|
79 |
'Other protein targets': 'other_protein_targets',
|
80 |
-
'Kinases (auto-detected)': 'kinases',
|
81 |
-
'Non-kinase enzymes (auto-detected)': 'non-kinase_enzymes',
|
82 |
-
'Membrane receptors (auto-detected)': 'membrane_receptors',
|
83 |
-
'Nuclear receptors (auto-detected)': 'nuclear_receptors',
|
84 |
-
'Ion channels (auto-detected)': 'ion_channels',
|
85 |
-
'Other protein targets (auto-detected)': 'other_protein_targets',
|
86 |
-
'Indiscriminate': 'indiscriminate'
|
87 |
}
|
88 |
|
89 |
TARGET_LIBRARY_MAP = {
|
90 |
-
'STITCH': 'stitch.csv',
|
91 |
-
'
|
|
|
92 |
}
|
93 |
|
94 |
DRUG_LIBRARY_MAP = {
|
95 |
-
'ChEMBL': 'chembl.csv',
|
96 |
-
'DrugBank': '
|
97 |
}
|
98 |
|
99 |
MODE_LIST = [
|
@@ -102,182 +256,796 @@ MODE_LIST = [
|
|
102 |
'Drug-target pair'
|
103 |
]
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
|
127 |
cfg = hydra.compose(
|
128 |
config_name="webserver_inference",
|
129 |
-
overrides=[
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
)
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
#
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
with gr.Tabs() as tabs:
|
201 |
-
with gr.TabItem(label='
|
202 |
gr.Markdown('''
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
gr.Markdown('''
|
247 |
-
# <center>
|
248 |
-
|
249 |
-
Analytic report for virtual screening predictions.
|
250 |
-
''')
|
251 |
-
with gr.Row():
|
252 |
-
scores = gr.CheckboxGroup(SCORE_MAP.keys(), label='Scores')
|
253 |
-
filters = gr.CheckboxGroup(FILTER_MAP.keys(), label='Filters')
|
254 |
-
|
255 |
-
with gr.Row():
|
256 |
-
df_original = gr.Dataframe(type="pandas", interactive=False, height=500, visible=False)
|
257 |
-
df_report = gr.Dataframe(type="pandas", interactive=False, height=500, visible=False)
|
258 |
-
with gr.Row():
|
259 |
-
clear_btn = gr.ClearButton()
|
260 |
-
analyze_btn = gr.Button("Report", variant="primary")
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
|
|
|
|
281 |
|
282 |
-
demo.
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import json
|
3 |
+
import textwrap
|
4 |
+
import threading
|
5 |
+
from math import pi
|
6 |
+
from uuid import uuid4
|
7 |
+
|
8 |
+
import io
|
9 |
import os
|
10 |
import pathlib
|
11 |
from pathlib import Path
|
12 |
import sys
|
13 |
|
14 |
+
from Bio import AlignIO, SeqIO
|
15 |
+
# from email_validator import validate_email
|
16 |
import gradio as gr
|
17 |
+
import hydra
|
18 |
import pandas as pd
|
19 |
+
import plotly.express as px
|
20 |
+
import requests
|
21 |
+
from requests.adapters import HTTPAdapter, Retry
|
22 |
from rdkit import Chem
|
23 |
+
from rdkit.Chem import RDConfig, Descriptors, Draw, Lipinski, Crippen, PandasTools
|
24 |
+
from rdkit.Chem.Scaffolds import MurckoScaffold
|
25 |
+
import seaborn as sns
|
26 |
|
27 |
+
import swifter
|
28 |
+
from tqdm.auto import tqdm
|
29 |
+
|
30 |
+
from deepscreen.data.dti import rdkit_canonicalize, validate_seq_str, FASTA_PAT, SMILES_PAT
|
31 |
from deepscreen.predict import predict
|
32 |
|
33 |
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
|
34 |
import sascorer
|
35 |
|
36 |
ROOT = Path.cwd()
|
37 |
+
DATA_PATH = Path("./") # Path("/data")
|
38 |
+
|
39 |
+
DF_FOR_REPORT = pd.DataFrame()
|
40 |
+
|
41 |
+
pd.set_option('display.float_format', '{:.3f}'.format)
|
42 |
+
PandasTools.molRepresentation = 'svg'
|
43 |
+
PandasTools.drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
|
44 |
+
PandasTools.drawOptions.clearBackground = False
|
45 |
+
PandasTools.drawOptions.bondLineWidth = 1.5
|
46 |
+
PandasTools.drawOptions.explicitMethyl = True
|
47 |
+
PandasTools.drawOptions.singleColourWedgeBonds = True
|
48 |
+
PandasTools.drawOptions.useCDKAtomPalette()
|
49 |
+
PandasTools.molSize = (128, 128)
|
50 |
|
51 |
+
SESSION = requests.Session()
|
52 |
+
ADAPTER = HTTPAdapter(max_retries=Retry(total=5, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504]))
|
53 |
+
SESSION.mount('http://', ADAPTER)
|
54 |
+
SESSION.mount('https://', ADAPTER)
|
55 |
+
|
56 |
+
# SCHEDULER = BackgroundScheduler()
|
57 |
+
|
58 |
+
UNIPROT_ENDPOINT = 'https://rest.uniprot.org/uniprotkb/{query}'
|
59 |
+
CSS = """
|
60 |
+
.help-tip {
|
61 |
+
position: absolute;
|
62 |
+
display: block;
|
63 |
+
top: 0px;
|
64 |
+
right: 0px;
|
65 |
+
text-align: center;
|
66 |
+
background-color: #29b6f6;
|
67 |
+
border-radius: 50%;
|
68 |
+
width: 24px;
|
69 |
+
height: 24px;
|
70 |
+
font-size: 12px;
|
71 |
+
line-height: 26px;
|
72 |
+
cursor: default;
|
73 |
+
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
|
74 |
+
}
|
75 |
+
|
76 |
+
.help-tip:hover {
|
77 |
+
cursor: pointer;
|
78 |
+
background-color: #ccc;
|
79 |
+
}
|
80 |
+
|
81 |
+
.help-tip:before {
|
82 |
+
content: '?';
|
83 |
+
font-weight: 700;
|
84 |
+
color: #fff;
|
85 |
+
z-index: 100;
|
86 |
+
}
|
87 |
+
|
88 |
+
.help-tip p {
|
89 |
+
visibility: hidden;
|
90 |
+
opacity: 0;
|
91 |
+
text-align: left;
|
92 |
+
background-color: #039be5;
|
93 |
+
padding: 20px;
|
94 |
+
width: 300px;
|
95 |
+
position: absolute;
|
96 |
+
border-radius: 4px;
|
97 |
+
right: -4px;
|
98 |
+
color: #fff;
|
99 |
+
font-size: 13px;
|
100 |
+
line-height: normal;
|
101 |
+
transform: scale(0.7);
|
102 |
+
transform-origin: 100% 0%;
|
103 |
+
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
|
104 |
+
z-index: 100;
|
105 |
+
}
|
106 |
+
|
107 |
+
.help-tip:hover p {
|
108 |
+
cursor: default;
|
109 |
+
visibility: visible;
|
110 |
+
opacity: 1;
|
111 |
+
transform: scale(1.0);
|
112 |
+
}
|
113 |
+
|
114 |
+
.help-tip p:before {
|
115 |
+
position: absolute;
|
116 |
+
content: '';
|
117 |
+
width: 0;
|
118 |
+
height: 0;
|
119 |
+
border: 6px solid transparent;
|
120 |
+
border-bottom-color: #039be5;
|
121 |
+
right: 10px;
|
122 |
+
top: -12px;
|
123 |
+
}
|
124 |
+
|
125 |
+
.help-tip p:after {
|
126 |
+
width: 100%;
|
127 |
+
height: 40px;
|
128 |
+
content: '';
|
129 |
+
position: absolute;
|
130 |
+
top: -5px;
|
131 |
+
left: 0;
|
132 |
+
}
|
133 |
+
|
134 |
+
.help-tip a {
|
135 |
+
color: #fff;
|
136 |
+
font-weight: 700;
|
137 |
+
}
|
138 |
+
|
139 |
+
.help-tip a:hover, .help-tip a:focus {
|
140 |
+
color: #fff;
|
141 |
+
text-decoration: underline;
|
142 |
+
}
|
143 |
+
|
144 |
+
.upload_button {
|
145 |
+
background-color: #008000;
|
146 |
+
}
|
147 |
+
|
148 |
+
.absolute {
|
149 |
+
position: absolute;
|
150 |
+
}
|
151 |
+
|
152 |
+
#example {
|
153 |
+
padding: 0;
|
154 |
+
background: none;
|
155 |
+
border: none;
|
156 |
+
text-decoration: underline;
|
157 |
+
box-shadow: none;
|
158 |
+
text-align: left !important;
|
159 |
+
display: inline-block !important;
|
160 |
+
}
|
161 |
+
|
162 |
+
footer {
|
163 |
+
visibility: hidden
|
164 |
+
}
|
165 |
+
|
166 |
+
"""
|
167 |
+
|
168 |
+
|
169 |
+
class HelpTip:
|
170 |
+
def __new__(cls, text):
|
171 |
+
return gr.HTML(elem_classes="help-tip",
|
172 |
+
value=f'<p>{text}</p>'
|
173 |
+
)
|
174 |
|
175 |
|
176 |
def sa_score(row):
|
177 |
+
return sascorer.calculateScore((row['Compound']))
|
178 |
+
|
179 |
|
180 |
def mw(row):
|
181 |
+
return Chem.Descriptors.MolWt((row['Compound']))
|
182 |
+
|
183 |
|
184 |
def hbd(row):
|
185 |
+
return Lipinski.NumHDonors((row['Compound']))
|
186 |
+
|
187 |
|
188 |
def hba(row):
|
189 |
+
return Lipinski.NumHAcceptors((row['Compound']))
|
190 |
+
|
191 |
|
192 |
def logp(row):
|
193 |
+
return Crippen.MolLogP((row['Compound']))
|
194 |
+
|
195 |
|
196 |
SCORE_MAP = {
|
197 |
'SAscore': sa_score,
|
198 |
+
'RAscore': None, # https://github.com/reymond-group/RAscore
|
199 |
+
'SCScore': None, # https://pubs.acs.org/doi/10.1021/acs.jcim.7b00622
|
200 |
+
'LogP': logp, # https://www.rdkit.org/docs/source/rdkit.Chem.Crippen.html
|
201 |
+
'MW': mw, # https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors.html
|
202 |
+
'HBD': hbd, # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
|
203 |
+
'HBA': hba, # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
|
204 |
+
'TopoPSA': None, # http://mordred-descriptor.github.io/documentation/master/api/mordred.TopoPSA.html
|
205 |
}
|
206 |
|
207 |
FILTER_MAP = {
|
|
|
218 |
|
219 |
PRESET_MAP = {
|
220 |
'DeepDTA': 'deep_dta',
|
221 |
+
'DeepConvDTI': 'deep_conv_dti',
|
222 |
+
'GraphDTA': 'graph_dta',
|
223 |
+
'MGraphDTA': 'm_graph_dta',
|
224 |
+
'HyperAttentionDTI': 'hyper_attention_dti',
|
225 |
+
'MolTrans': 'mol_trans',
|
226 |
+
'TransformerCPI': 'transfomer_cpi',
|
227 |
+
'TransformerCPI2': 'transformer_cpi_2',
|
228 |
+
'DrugBAN': 'drug_ban',
|
229 |
+
'DrugVQA(Seq)': 'drug_vqa'
|
230 |
}
|
231 |
|
232 |
TARGET_FAMILY_MAP = {
|
233 |
+
'General': 'general',
|
234 |
+
'Kinase': 'kinases',
|
235 |
+
'Non-kinase enzyme': 'non-kinase_enzymes',
|
236 |
+
'Membrane receptor': 'membrane_receptors',
|
237 |
+
'Nuclear receptor': 'nuclear_receptors',
|
238 |
+
'Ion channel': 'ion_channels',
|
|
|
|
|
239 |
'Other protein targets': 'other_protein_targets',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
}
|
241 |
|
242 |
TARGET_LIBRARY_MAP = {
|
243 |
+
# 'STITCH': 'stitch.csv',
|
244 |
+
'ChEMBL33 (all species)': 'ChEMBL33_all_spe_single_prot_info.csv',
|
245 |
+
'DrugBank (Human)': 'drugbank_human_py_annot.csv',
|
246 |
}
|
247 |
|
248 |
DRUG_LIBRARY_MAP = {
|
249 |
+
# 'ChEMBL': 'chembl.csv',
|
250 |
+
'DrugBank (Human)': 'drugbank_human_py_annot.csv',
|
251 |
}
|
252 |
|
253 |
MODE_LIST = [
|
|
|
256 |
'Drug-target pair'
|
257 |
]
|
258 |
|
259 |
+
COLUMN_ALIASES = {
|
260 |
+
'X1': 'Drug SMILES',
|
261 |
+
'X2': 'Target FASTA',
|
262 |
+
'ID1': 'Drug ID',
|
263 |
+
'ID2': 'Target ID',
|
264 |
+
}
|
265 |
+
|
266 |
+
URL = "https://ciddr-lab.ac.cn/deepseqreen"
|
267 |
+
|
268 |
+
|
269 |
+
def validate_columns(df, mandatory_cols):
|
270 |
+
missing_cols = [col for col in mandatory_cols if col not in df.columns]
|
271 |
+
if missing_cols:
|
272 |
+
error_message = (f"The following mandatory columns are missing "
|
273 |
+
f"in the uploaded dataset: {str(['X1', 'X2']).strip('[]')}.")
|
274 |
+
raise gr.Error(error_message)
|
275 |
+
|
276 |
+
|
277 |
+
def send_email(receiver, msg):
|
278 |
+
pass
|
279 |
+
|
280 |
+
|
281 |
+
def submit_predict(predict_filepath, task, preset, target_family, flag, progress=gr.Progress(track_tqdm=True)):
|
282 |
+
if flag:
|
283 |
+
job_id = flag
|
284 |
+
global COLUMN_ALIASES
|
285 |
+
task = TASK_MAP[task]
|
286 |
+
preset = PRESET_MAP[preset]
|
287 |
+
target_family = TARGET_FAMILY_MAP[target_family]
|
288 |
+
# email_hash = hashlib.sha256(email.encode()).hexdigest()
|
289 |
+
COLUMN_ALIASES = COLUMN_ALIASES | {
|
290 |
+
'Y': 'Actual interaction' if task == 'binary' else 'Actual affinity',
|
291 |
+
'Y^': 'Predicted interaction' if task == 'binary' else 'Predicted affinity'
|
292 |
+
}
|
293 |
+
|
294 |
+
# target_family_list = [target_family]
|
295 |
+
# for family in target_family_list:
|
296 |
+
|
297 |
+
# try:
|
298 |
+
prediction_df = pd.DataFrame()
|
299 |
with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
|
300 |
cfg = hydra.compose(
|
301 |
config_name="webserver_inference",
|
302 |
+
overrides=[f"task={task}",
|
303 |
+
f"preset={preset}",
|
304 |
+
f"ckpt_path=resources/checkpoints/{preset}-{task}-{target_family}.ckpt",
|
305 |
+
f"data.data_file='{str(predict_filepath)}'"])
|
306 |
+
|
307 |
+
predictions, _ = predict(cfg)
|
308 |
+
predictions = [pd.DataFrame(prediction) for prediction in predictions]
|
309 |
+
prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)])
|
310 |
+
|
311 |
+
predictions_file = f'{job_id}_predictions.csv'
|
312 |
+
prediction_df.to_csv(predictions_file)
|
313 |
+
|
314 |
+
return [gr.Markdown(visible=True),
|
315 |
+
gr.File(predictions_file),
|
316 |
+
gr.State(False)]
|
317 |
+
#
|
318 |
+
# except Exception as e:
|
319 |
+
# raise gr.Error(str(e))
|
320 |
+
|
321 |
+
# email_lock = Path(f"outputs/{email_hash}.lock")
|
322 |
+
# with open(email_lock, "w") as file:
|
323 |
+
# record = {
|
324 |
+
# "email": email,
|
325 |
+
# "job_id": job_id
|
326 |
+
# }
|
327 |
+
# json.dump(record, file)
|
328 |
+
# def run_predict():
|
329 |
+
# TODO per-user submit usage
|
330 |
+
# # email_lock = Path(f"outputs/{email_hash}.lock")
|
331 |
+
# # with open(email_lock, "w") as file:
|
332 |
+
# # record = {
|
333 |
+
# # "email": email,
|
334 |
+
# # "job_id": job_id
|
335 |
+
# # }
|
336 |
+
# # json.dump(record, file)
|
337 |
+
#
|
338 |
+
# job_lock = DATA_PATH / f"outputs/{job_id}.lock"
|
339 |
+
# with open(job_lock, "w") as file:
|
340 |
+
# pass
|
341 |
+
#
|
342 |
+
# try:
|
343 |
+
# prediction_df = pd.DataFrame()
|
344 |
+
# for family in target_family_list:
|
345 |
+
# with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
|
346 |
+
# cfg = hydra.compose(
|
347 |
+
# config_name="webserver_inference",
|
348 |
+
# overrides=[f"task={task}",
|
349 |
+
# f"preset={preset}",
|
350 |
+
# f"ckpt_path=resources/checkpoints/{preset}-{task}-{family}.ckpt",
|
351 |
+
# f"data.data_file='{str(predict_dataset)}'"])
|
352 |
+
#
|
353 |
+
# predictions, _ = predict(cfg)
|
354 |
+
# predictions = [pd.DataFrame(prediction) for prediction in predictions]
|
355 |
+
# prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)])
|
356 |
+
# prediction_df.to_csv(f'outputs/{job_id}.csv')
|
357 |
+
# # email_lock.unlink()
|
358 |
+
# job_lock.unlink()
|
359 |
+
#
|
360 |
+
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) completed successfully. You may retrieve the '
|
361 |
+
# f'results and generate an analytical report at {URL} using the job id within 48 hours.')
|
362 |
+
# gr.Info(msg)
|
363 |
+
# except Exception as e:
|
364 |
+
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) failed due to an error: "{str(e)}." You may '
|
365 |
+
# f'reach out to the author about the error through email ([email protected]).')
|
366 |
+
# raise gr.Error(str(e))
|
367 |
+
# finally:
|
368 |
+
# send_email(email, msg)
|
369 |
+
#
|
370 |
+
# # Run "predict" asynchronously
|
371 |
+
# threading.Thread(target=run_predict).start()
|
372 |
+
#
|
373 |
+
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) started running. You may retrieve the results '
|
374 |
+
# f'and generate an analytical report at {URL} using the job id once the job is done. Only one job '
|
375 |
+
# f'per user is allowed at the same time.')
|
376 |
+
# send_email(email, msg)
|
377 |
+
|
378 |
+
# # Return the job id first
|
379 |
+
# return [
|
380 |
+
# gr.Blocks(visible=False),
|
381 |
+
# gr.Markdown(f"Your prediction job is running... "
|
382 |
+
# f"You may stay on this page or come back later to retrieve the results "
|
383 |
+
# f"Once you receive our email notification."),
|
384 |
+
# ]
|
385 |
+
|
386 |
+
|
387 |
+
def update_df(file, progress=gr.Progress(track_tqdm=True)):
|
388 |
+
global DF_FOR_REPORT
|
389 |
+
if file is not None:
|
390 |
+
df = pd.read_csv(file)
|
391 |
+
if df['X1'].nunique() > 1:
|
392 |
+
df['Scaffold SMILES'] = df['X1'].swifter.progress_bar(
|
393 |
+
desc=f"Calculating scaffold...").apply(MurckoScaffold.MurckoScaffoldSmilesFromSmiles)
|
394 |
+
# Add a new column with RDKit molecule objects
|
395 |
+
PandasTools.AddMoleculeColumnToFrame(df, smilesCol='X1', molCol='Compound',
|
396 |
+
includeFingerprints=False)
|
397 |
+
PandasTools.AddMoleculeColumnToFrame(df, smilesCol='Scaffold SMILES', molCol='Scaffold',
|
398 |
+
includeFingerprints=False)
|
399 |
+
DF_FOR_REPORT = df.copy()
|
400 |
+
|
401 |
+
pie_chart = None
|
402 |
+
value = None
|
403 |
+
if 'Y^' in DF_FOR_REPORT.columns:
|
404 |
+
value = 'Y^'
|
405 |
+
elif 'Y' in DF_FOR_REPORT.columns:
|
406 |
+
value = 'Y'
|
407 |
+
|
408 |
+
if value:
|
409 |
+
if DF_FOR_REPORT['X1'].nunique() > 1 >= DF_FOR_REPORT['X2'].nunique():
|
410 |
+
pie_chart = create_pie_chart(DF_FOR_REPORT, category='Scaffold SMILES', value=value, top_k=100)
|
411 |
+
elif DF_FOR_REPORT['X2'].nunique() > 1 >= DF_FOR_REPORT['X1'].nunique():
|
412 |
+
pie_chart = create_pie_chart(DF_FOR_REPORT, category='Target family', value=value, top_k=100)
|
413 |
+
|
414 |
+
return create_html_report(DF_FOR_REPORT), pie_chart
|
415 |
+
else:
|
416 |
+
return gr.HTML(''), gr.Plot()
|
417 |
+
|
418 |
+
|
419 |
+
def create_html_report(df, progress=gr.Progress(track_tqdm=True)):
|
420 |
+
cols_left = ['ID2', 'Y', 'Y^', 'ID1', 'Compound', 'Scaffold', 'Scaffold SMILES', ]
|
421 |
+
cols_right = ['X1', 'X2']
|
422 |
+
cols_left = [col for col in cols_left if col in df.columns]
|
423 |
+
cols_right = [col for col in cols_right if col in df.columns]
|
424 |
+
df = df[cols_left + (df.columns.drop(cols_left + cols_right).tolist()) + cols_right]
|
425 |
+
df['X2'] = df['X2'].apply(wrap_text)
|
426 |
+
df.rename(COLUMN_ALIASES, inplace=True)
|
427 |
+
|
428 |
+
styled_df = df.style
|
429 |
+
# styled_df = df.style.format("{:.2f}")
|
430 |
+
colors = sns.color_palette('husl', len(df.columns))
|
431 |
+
for i, col in enumerate(df.columns):
|
432 |
+
if pd.api.types.is_numeric_dtype(df[col]):
|
433 |
+
styled_df = styled_df.background_gradient(subset=col, cmap=sns.light_palette(colors[i], as_cmap=True))
|
434 |
+
|
435 |
+
# Return the DataFrame as HTML
|
436 |
+
PandasTools.RenderImagesInAllDataFrames(images=True)
|
437 |
+
|
438 |
+
html = df.to_html()
|
439 |
+
return f'<div style="overflow:auto; height: 500px;">{html}</div>'
|
440 |
+
# return gr.HTML(pn.widgets.Tabulator(df).embed())
|
441 |
+
|
442 |
+
|
443 |
+
# def create_pie_chart(df, category, value, top_k):
|
444 |
+
# df.rename(COLUMN_ALIASES, inplace=True)
|
445 |
+
# # Select the top_k records based on the value_col
|
446 |
+
# top_k_df = df.nlargest(top_k, value)
|
447 |
+
#
|
448 |
+
# # Count the frequency of each unique value in the category_col column
|
449 |
+
# category_counts = top_k_df[category].value_counts()
|
450 |
+
#
|
451 |
+
# # Convert the counts to a DataFrame
|
452 |
+
# data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values})
|
453 |
+
#
|
454 |
+
# # Calculate the angle for each category
|
455 |
+
# data['angle'] = data['value']/data['value'].sum() * 2*pi
|
456 |
+
#
|
457 |
+
# # Assign colors
|
458 |
+
# data['color'] = Spectral11[0:len(category_counts)]
|
459 |
+
#
|
460 |
+
# # Create the plot
|
461 |
+
# p = figure(height=350, title="Pie Chart", toolbar_location=None,
|
462 |
+
# tools="hover", tooltips="@{}: @value".format(category), x_range=(-0.5, 1.0))
|
463 |
+
#
|
464 |
+
# p.wedge(x=0, y=1, radius=0.4,
|
465 |
+
# start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
|
466 |
+
# line_color="white", fill_color='color', legend_field=category, source=data)
|
467 |
+
#
|
468 |
+
# p.axis.axis_label = None
|
469 |
+
# p.axis.visible = False
|
470 |
+
# p.grid.grid_line_color = None
|
471 |
+
#
|
472 |
+
# return p
|
473 |
+
|
474 |
+
def create_pie_chart(df, category, value, top_k):
|
475 |
+
df = df.copy()
|
476 |
+
df.rename(COLUMN_ALIASES, inplace=True)
|
477 |
+
value = COLUMN_ALIASES.get(value, value)
|
478 |
+
# Select the top_k records based on the value_col
|
479 |
+
top_k_df = df.nlargest(top_k, value)
|
480 |
+
|
481 |
+
# Count the frequency of each unique value in the category_col column
|
482 |
+
category_counts = top_k_df[category].value_counts()
|
483 |
+
|
484 |
+
# Convert the counts to a DataFrame
|
485 |
+
data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values})
|
486 |
+
|
487 |
+
# Create the plot
|
488 |
+
fig = px.pie(data, values='value', names=category, title=f'Top-{top_k} {category} in {value}')
|
489 |
+
fig.update_traces(textposition='inside', textinfo='percent+label')
|
490 |
+
|
491 |
+
return fig
|
492 |
+
|
493 |
+
|
494 |
+
def submit_report(score_list, filter_list, progress=gr.Progress(track_tqdm=True)):
|
495 |
+
df = DF_FOR_REPORT.copy()
|
496 |
+
try:
|
497 |
+
for filter_name in filter_list:
|
498 |
+
pass
|
499 |
+
|
500 |
+
for score_name in score_list:
|
501 |
+
df[score_name] = df.swifter.progress_bar(desc=f"Calculating {score_name}").apply(
|
502 |
+
SCORE_MAP[score_name], axis=1)
|
503 |
+
|
504 |
+
pie_chart = None
|
505 |
+
value = None
|
506 |
+
if 'Y^' in df.columns:
|
507 |
+
value = 'Y^'
|
508 |
+
elif 'Y' in df.columns:
|
509 |
+
value = 'Y'
|
510 |
+
|
511 |
+
if value:
|
512 |
+
if df['X1'].nunique() > 1 >= df['X2'].nunique():
|
513 |
+
pie_chart = create_pie_chart(df, category='Scaffold SMILES', value=value, top_k=100)
|
514 |
+
elif df['X2'].nunique() > 1 >= df['X1'].nunique():
|
515 |
+
pie_chart = create_pie_chart(df, category='Target famiy', value=value, top_k=100)
|
516 |
+
|
517 |
+
return create_html_report(df), pie_chart
|
518 |
+
|
519 |
+
except Exception as e:
|
520 |
+
raise gr.Error(str(e))
|
521 |
+
|
522 |
+
|
523 |
+
def check_job_status(job_id):
|
524 |
+
job_lock = DATA_PATH / f"{job_id}.lock"
|
525 |
+
job_file = DATA_PATH / f"{job_id}.csv"
|
526 |
+
if job_lock.is_file():
|
527 |
+
return {gr.Markdown(f"Your job ({job_id}) is still running... "
|
528 |
+
f"You may stay on this page or come back later to retrieve the results "
|
529 |
+
f"Once you receive our email notification."),
|
530 |
+
None,
|
531 |
+
None
|
532 |
+
}
|
533 |
+
elif job_file.is_file():
|
534 |
+
return {gr.Markdown(f"Your job ({job_id}) is done! Redirecting you to generate reports..."),
|
535 |
+
gr.Tabs(selected=3),
|
536 |
+
gr.File(str(job_lock))}
|
537 |
+
|
538 |
+
|
539 |
+
def wrap_text(text, line_length=60):
|
540 |
+
wrapper = textwrap.TextWrapper(width=line_length)
|
541 |
+
if text.startswith('>'):
|
542 |
+
sections = text.split('>')
|
543 |
+
wrapped_sections = []
|
544 |
+
for section in sections:
|
545 |
+
if not section:
|
546 |
+
continue
|
547 |
+
lines = section.split('\n')
|
548 |
+
seq_header = lines[0]
|
549 |
+
wrapped_seq = wrapper.fill(''.join(lines[1:]))
|
550 |
+
wrapped_sections.append(f">{seq_header}\n{wrapped_seq}")
|
551 |
+
return '\n'.join(wrapped_sections)
|
552 |
+
else:
|
553 |
+
return wrapper.fill(text)
|
554 |
+
|
555 |
+
|
556 |
+
def unwrap_text(text):
|
557 |
+
return text.strip.replece('\n', '')
|
558 |
+
|
559 |
+
|
560 |
+
def smiles_from_sdf(sdf_path):
|
561 |
+
with Chem.SDMolSupplier(sdf_path) as suppl:
|
562 |
+
return Chem.MolToSmiles(suppl[0])
|
563 |
+
|
564 |
+
|
565 |
+
theme = gr.themes.Base(spacing_size="sm", text_size='md').set(
|
566 |
+
background_fill_primary='#dfe6f0',
|
567 |
+
background_fill_secondary='#dfe6f0',
|
568 |
+
checkbox_label_background_fill='#dfe6f0',
|
569 |
+
checkbox_label_background_fill_hover='#dfe6f0',
|
570 |
+
checkbox_background_color='white',
|
571 |
+
checkbox_border_color='#4372c4',
|
572 |
+
border_color_primary='#4372c4',
|
573 |
+
border_color_accent='#4372c4',
|
574 |
+
button_primary_background_fill='#4372c4',
|
575 |
+
button_primary_text_color='white',
|
576 |
+
button_secondary_border_color='#4372c4',
|
577 |
+
body_text_color='#4372c4',
|
578 |
+
block_title_text_color='#4372c4',
|
579 |
+
block_label_text_color='#4372c4',
|
580 |
+
block_info_text_color='#505358',
|
581 |
+
block_border_color=None,
|
582 |
+
input_border_color='#4372c4',
|
583 |
+
panel_border_color='#4372c4',
|
584 |
+
input_background_fill='white',
|
585 |
+
code_background_fill='white',
|
586 |
+
)
|
587 |
+
|
588 |
+
with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
589 |
+
run_state = gr.State(value=False)
|
590 |
+
screen_flag = gr.State(value=False)
|
591 |
+
identify_flag = gr.State(value=False)
|
592 |
+
infer_flag = gr.State(value=False)
|
593 |
+
|
594 |
with gr.Tabs() as tabs:
|
595 |
+
with gr.TabItem(label='Drug hit screening', id=0):
|
596 |
gr.Markdown('''
|
597 |
+
# <center>DeepSEQreen Drug Hit Screening</center>
|
598 |
+
<center>
|
599 |
+
To predict interactions/binding affinities of a single target against a library of drugs.
|
600 |
+
</center>
|
601 |
+
''')
|
602 |
+
with gr.Blocks() as screen_block:
|
603 |
+
with gr.Column() as screen_page:
|
604 |
+
with gr.Row():
|
605 |
+
with gr.Column(scale=4, variant='panel'):
|
606 |
+
target_fasta = gr.Code(label='Target sequence FASTA',
|
607 |
+
interactive=True, lines=5)
|
608 |
+
example_target = gr.Button(value='Example: Human MAPK14', elem_id='example')
|
609 |
+
with gr.Row():
|
610 |
+
with gr.Column(scale=1):
|
611 |
+
with gr.Group():
|
612 |
+
with gr.Row():
|
613 |
+
target_input_type = gr.Radio(label='Target input type',
|
614 |
+
choices=['Sequence', 'UniProt ID', 'Gene symbol'],
|
615 |
+
value='Sequence')
|
616 |
+
target_query = gr.Textbox(label='UniProt ID/Accession',
|
617 |
+
visible=False, interactive=True)
|
618 |
+
target_upload_btn = gr.UploadButton(label='Upload a FASTA file',
|
619 |
+
type='binary',
|
620 |
+
visible=True, variant='primary',
|
621 |
+
size='lg', elem_classes="upload_button")
|
622 |
+
target_query_btn = gr.Button(value='Query the sequence', variant='primary',
|
623 |
+
elem_classes='upload_button', visible=False)
|
624 |
+
|
625 |
+
with gr.Column(scale=1):
|
626 |
+
with gr.Row():
|
627 |
+
with gr.Group():
|
628 |
+
drug_screen_target_family = gr.Dropdown(
|
629 |
+
choices=list(TARGET_FAMILY_MAP.keys()),
|
630 |
+
value='General',
|
631 |
+
label='Target family', interactive=True)
|
632 |
+
# with gr.Column(scale=1, min_width=24):
|
633 |
+
auto_detect_btn = gr.Button(value='Auto-detect', variant='primary')
|
634 |
+
HelpTip(
|
635 |
+
"Target amino acid sequence in the FASTA format. Alternatively, you may use a "
|
636 |
+
"UniProt ID/accession to query UniProt database for the sequence of your target"
|
637 |
+
"of interest. You can also search on databases like UniProt, RCSB PDB, "
|
638 |
+
"NCBI Protein for the FASTA string representing your target of interest. If "
|
639 |
+
"the input FASTA contains multiple entities, only the first one will be used."
|
640 |
+
)
|
641 |
+
|
642 |
+
with gr.Column(variant='panel'):
|
643 |
+
with gr.Group():
|
644 |
+
drug_library = gr.Radio(label='Drug library',
|
645 |
+
choices=list(DRUG_LIBRARY_MAP.keys()) + ['Upload a drug library'])
|
646 |
+
drug_library_upload = gr.File(label='Custom drug library file', visible=True)
|
647 |
+
|
648 |
+
with gr.Row(variant='panel'):
|
649 |
+
drug_screen_task = gr.Radio(list(TASK_MAP.keys()), label='Task',
|
650 |
+
value='Drug-target interaction')
|
651 |
+
|
652 |
+
with gr.Column(scale=2):
|
653 |
+
with gr.Group():
|
654 |
+
drug_screen_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Model')
|
655 |
+
recommend_btn = gr.Button(value='Recommend a model', variant='primary')
|
656 |
+
HelpTip("We recommend the appropriate model for your use case based on model performance "
|
657 |
+
"in drug-target interaction or binding affinity prediction "
|
658 |
+
"benchmarked on different target families and real-world data scenarios.")
|
659 |
+
|
660 |
+
# drug_screen_email = gr.Textbox(
|
661 |
+
# label='Email (optional)',
|
662 |
+
# info="Your email will be used to send you notifications when your job finishes."
|
663 |
+
# )
|
664 |
+
|
665 |
+
with gr.Row(visible=True):
|
666 |
+
drug_screen_clr_btn = gr.ClearButton()
|
667 |
+
drug_screen_btn = gr.Button(value='SCREEN', variant='primary')
|
668 |
+
# TODO Modify the pd df directly with df['X2'] = target
|
669 |
+
|
670 |
+
screen_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
|
671 |
+
screen_waiting = gr.Markdown("""
|
672 |
+
<center>Your job is running... It might take a few minutes.
|
673 |
+
When it's done, you will be redirected to the report page.
|
674 |
+
Meanwhile, please leave the page on.</center>
|
675 |
+
""", visible=False)
|
676 |
+
|
677 |
+
with gr.TabItem(label='Target protein identification', id=1):
|
678 |
gr.Markdown('''
|
679 |
+
# <center>DeepSEQreen Target Protein Identification</center>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
680 |
|
681 |
+
<center>
|
682 |
+
To predict interactions/binding affinities of a single drug against a library of targets.
|
683 |
+
</center>
|
684 |
+
''')
|
685 |
+
with gr.Blocks() as identify_block:
|
686 |
+
with gr.Column() as identify_page:
|
687 |
+
with gr.Row():
|
688 |
+
with gr.Group():
|
689 |
+
drug_type = gr.Dropdown(label='Drug input type',
|
690 |
+
choices=['SMILES', 'SDF'],
|
691 |
+
value='SMILES',
|
692 |
+
scale=1,
|
693 |
+
interactive=True)
|
694 |
+
drug_upload = gr.UploadButton(label='⤒ Upload a file')
|
695 |
+
drug_smiles = gr.Code(label='Drug canonical SMILES', interactive=True, scale=5, lines=5)
|
696 |
+
with gr.Column(scale=1):
|
697 |
+
HelpTip(
|
698 |
+
"""Drug molecule in the SMILES format. You may search on databases like
|
699 |
+
NCBI PubChem, ChEMBL, and DrugBank for the SMILES strings
|
700 |
+
representing your drugs of interest.
|
701 |
+
"""
|
702 |
+
)
|
703 |
+
example_drug = gr.Button(value='Example: Aspirin', elem_id='example')
|
704 |
+
|
705 |
+
with gr.Column(variant='panel'):
|
706 |
+
with gr.Group():
|
707 |
+
target_library = gr.Radio(label='Target library',
|
708 |
+
choices=list(TARGET_LIBRARY_MAP.keys()) + ['Upload a target library'])
|
709 |
+
target_library_upload = gr.File(label='Custom target library file', visible=True)
|
710 |
+
|
711 |
+
with gr.Row(visible=True):
|
712 |
+
target_identify_task = gr.Dropdown(list(TASK_MAP.keys()), label='Task')
|
713 |
+
HelpTip("Choose a preset model for making the predictions.")
|
714 |
+
target_identify_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
|
715 |
+
HelpTip("Choose the protein family of your target.")
|
716 |
+
target_identify_target_family = gr.Dropdown(choices=['General'],
|
717 |
+
value='General',
|
718 |
+
label='Target family')
|
719 |
+
|
720 |
+
# with gr.Row():
|
721 |
+
# target_identify_email = gr.Textbox(
|
722 |
+
# label='Email (optional)',
|
723 |
+
# info="Your email will be used to send you notifications when your job finishes."
|
724 |
+
# )
|
725 |
+
|
726 |
+
with gr.Row(visible=True):
|
727 |
+
target_identify_clr_btn = gr.ClearButton()
|
728 |
+
target_identify_btn = gr.Button(value='IDENTIFY', variant='primary')
|
729 |
+
|
730 |
+
identify_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
|
731 |
+
identify_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
|
732 |
+
f"When it's done, you will be redirected to the report page. "
|
733 |
+
f"Meanwhile, please leave the page on.",
|
734 |
+
visible=False)
|
735 |
+
with gr.TabItem(label='Interaction pair inference', id=2):
|
736 |
+
gr.Markdown('''
|
737 |
+
# <center>DeepSEQreen Interaction Pair Inference</center>
|
738 |
+
<center>
|
739 |
+
To predict interactions/binding affinities between any drug-target pairs.
|
740 |
+
</center>
|
741 |
+
''')
|
742 |
+
with gr.Blocks() as infer_block:
|
743 |
+
with gr.Column() as infer_page:
|
744 |
+
HelpTip("Upload a custom drug-target pair dataset. See the documentation for details.")
|
745 |
+
infer_data_for_predict = gr.File(
|
746 |
+
label='Prediction dataset file', file_count="single", type='filepath')
|
747 |
+
# TODO example dataset
|
748 |
+
# TODO download example dataset
|
749 |
+
|
750 |
+
with gr.Row(visible=True):
|
751 |
+
pair_infer_task = gr.Dropdown(list(TASK_MAP.keys()), label='Task')
|
752 |
+
HelpTip("Choose a preset model for making the predictions.")
|
753 |
+
pair_infer_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
|
754 |
+
HelpTip("Choose the protein family of your target.")
|
755 |
+
pair_infer_target_family = gr.Dropdown(choices=['General'],
|
756 |
+
label='Target family',
|
757 |
+
value='General')
|
758 |
+
|
759 |
+
# with gr.Row():
|
760 |
+
# pair_infer_email = gr.Textbox(
|
761 |
+
# label='Email (optional)',
|
762 |
+
# info="Your email will be used to send you notifications when your job finishes."
|
763 |
+
# )
|
764 |
+
|
765 |
+
with gr.Row(visible=True):
|
766 |
+
pair_infer_clr_btn = gr.ClearButton()
|
767 |
+
pair_infer_btn = gr.Button(value='INFER', variant='primary')
|
768 |
+
|
769 |
+
infer_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
|
770 |
+
f"When it's done, you will be redirected to the report page. "
|
771 |
+
f"Meanwhile, please leave the page on.",
|
772 |
+
visible=False)
|
773 |
+
|
774 |
+
with gr.TabItem(label='Chemical property report', id=3):
|
775 |
+
with gr.Blocks() as report:
|
776 |
+
gr.Markdown('''
|
777 |
+
# <center>DeepSEQreen Chemical Property Report</center>
|
778 |
+
<center>
|
779 |
+
To compute chemical properties for the predictions of drug hit screening,
|
780 |
+
target protein identification, and interaction pair inference. You may also upload
|
781 |
+
your own dataset.
|
782 |
+
</center>
|
783 |
+
''')
|
784 |
+
with gr.Row():
|
785 |
+
file_for_report = gr.File(interactive=True, type='filepath')
|
786 |
+
# df_original = gr.Dataframe(type="pandas", interactive=False, visible=False)
|
787 |
+
scores = gr.CheckboxGroup(list(SCORE_MAP.keys()), label='Scores')
|
788 |
+
filters = gr.CheckboxGroup(list(FILTER_MAP.keys()), label='Filters')
|
789 |
+
|
790 |
+
with gr.Row():
|
791 |
+
clear_btn = gr.ClearButton()
|
792 |
+
analyze_btn = gr.Button('REPORT', variant='primary')
|
793 |
+
|
794 |
+
with gr.Row():
|
795 |
+
with gr.Column(scale=3):
|
796 |
+
html_report = gr.HTML() # label='Results', visible=True)
|
797 |
+
ranking_pie_chart = gr.Plot(visible=False)
|
798 |
+
|
799 |
+
with gr.Row():
|
800 |
+
csv_download_btn = gr.Button('Download report (HTML)', variant='primary')
|
801 |
+
html_download_btn = gr.Button('Download raw data (CSV)', variant='primary')
|
802 |
+
|
803 |
+
|
804 |
+
def target_input_type_select(input_type):
|
805 |
+
match input_type:
|
806 |
+
case 'UniProt ID':
|
807 |
+
return [gr.UploadButton(visible=False),
|
808 |
+
gr.Textbox(visible=True, label='UniProt ID/accession', info=None, value=''),
|
809 |
+
gr.Button(visible=True)]
|
810 |
+
case 'Gene symbol':
|
811 |
+
return [gr.UploadButton(visible=False),
|
812 |
+
gr.Textbox(visible=True, label='Gene symbol/name', info='Organism: human', value=''),
|
813 |
+
gr.Button(visible=True)]
|
814 |
+
case 'Sequence':
|
815 |
+
return [gr.UploadButton(visible=True),
|
816 |
+
gr.Textbox(visible=False), gr.Button(visible=False)]
|
817 |
+
|
818 |
+
|
819 |
+
target_input_type.select(fn=target_input_type_select,
|
820 |
+
inputs=target_input_type, outputs=[target_upload_btn, target_query, target_query_btn],
|
821 |
+
show_progress=False)
|
822 |
+
|
823 |
+
|
824 |
+
def uniprot_query(query, input_type):
|
825 |
+
fasta_seq = ''
|
826 |
+
query = query.strip()
|
827 |
+
|
828 |
+
match input_type:
|
829 |
+
case 'UniProt ID':
|
830 |
+
query = f"{query.strip()}.fasta"
|
831 |
+
case 'Gene symbol':
|
832 |
+
query = f'search?query=organism_id:9606+AND+gene:{query}&format=fasta'
|
833 |
+
|
834 |
+
try:
|
835 |
+
fasta = SESSION.get(UNIPROT_ENDPOINT.format(query=query))
|
836 |
+
fasta.raise_for_status()
|
837 |
+
fasta_seq = fasta.text
|
838 |
+
except Exception as e:
|
839 |
+
raise gr.Warning(f"Failed to query FASTA from UniProt due to {str(e)}")
|
840 |
+
finally:
|
841 |
+
return fasta_seq
|
842 |
+
|
843 |
+
|
844 |
+
target_upload_btn.upload(fn=lambda x: x.decode(), inputs=target_upload_btn, outputs=target_fasta)
|
845 |
+
target_query_btn.click(uniprot_query, inputs=[target_query, target_input_type], outputs=target_fasta)
|
846 |
+
|
847 |
+
target_fasta.focus(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
|
848 |
+
target_fasta.blur(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
|
849 |
+
drug_smiles.focus(fn=wrap_text, inputs=drug_smiles, outputs=drug_smiles, show_progress=False)
|
850 |
+
drug_smiles.blur(fn=wrap_text, inputs=drug_smiles, outputs=drug_smiles, show_progress=False)
|
851 |
+
|
852 |
+
|
853 |
+
def example_fill(input_type):
|
854 |
+
match input_type:
|
855 |
+
case 'UniProt ID':
|
856 |
+
query = 'Q16539'
|
857 |
+
case 'Gene symbol':
|
858 |
+
query = 'MAPK14'
|
859 |
+
case _:
|
860 |
+
query = ''
|
861 |
+
return {target_query: query,
|
862 |
+
target_fasta: """
|
863 |
+
>sp|Q16539|MK14_HUMAN Mitogen-activated protein kinase 14 OS=Homo sapiens OX=9606 GN=MAPK14 PE=1 SV=3
|
864 |
+
MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQ
|
865 |
+
SIIHAKRTYRELRLLKHMKHENVIGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQ
|
866 |
+
KLTDDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCELKILDFGLARHTDDEMT
|
867 |
+
GYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVG
|
868 |
+
TPGAELLKKISSESARNYIQSLTQMPKMNFANVFIGANPLAVDLLEKMLVLDSDKRITAA
|
869 |
+
QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
870 |
+
"""}
|
871 |
+
|
872 |
+
|
873 |
+
example_target.click(fn=example_fill, inputs=target_input_type,
|
874 |
+
outputs=[target_query, target_fasta], show_progress=False)
|
875 |
+
example_drug.click(fn=lambda: 'CC(=O)Oc1ccccc1C(=O)O', outputs=drug_smiles, show_progress=False)
|
876 |
+
|
877 |
+
|
878 |
+
def drug_screen_validate(fasta, library, library_upload, state):
|
879 |
+
if not state:
|
880 |
+
def process_target_fasta(sequence):
|
881 |
+
lines = sequence.strip().split("\n")
|
882 |
+
if lines[0].startswith(">"):
|
883 |
+
lines = lines[1:]
|
884 |
+
return ''.join(lines).split(">")[0]
|
885 |
+
|
886 |
+
fasta = process_target_fasta(fasta)
|
887 |
+
err = validate_seq_str(fasta, FASTA_PAT)
|
888 |
+
if err:
|
889 |
+
raise gr.Error(f'Found error(s) in your target fasta input: {err}')
|
890 |
+
|
891 |
+
if library in DRUG_LIBRARY_MAP.keys():
|
892 |
+
screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library]))
|
893 |
+
else:
|
894 |
+
screen_df = pd.read_csv(library_upload)
|
895 |
+
validate_columns(screen_df, ['X1'])
|
896 |
+
|
897 |
+
screen_df['X2'] = fasta
|
898 |
+
|
899 |
+
job_id = uuid4()
|
900 |
+
temp_file = Path(f'{job_id}_temp.csv').resolve()
|
901 |
+
screen_df.to_csv(temp_file)
|
902 |
+
if temp_file.is_file():
|
903 |
+
return {screen_data_for_predict: str(temp_file),
|
904 |
+
screen_flag: job_id,
|
905 |
+
run_state: job_id}
|
906 |
+
|
907 |
+
else:
|
908 |
+
gr.Warning('You have another prediction job '
|
909 |
+
'(drug hit screening, target protein identification, or interation pair inference) '
|
910 |
+
'running in the session right now. '
|
911 |
+
'Please submit another job when your current job has finished.')
|
912 |
+
return {screen_flag: False}
|
913 |
+
|
914 |
+
def target_identify_validate(smiles, library, library_upload, state):
|
915 |
+
if not state:
|
916 |
+
err = validate_seq_str(smiles, SMILES_PAT)
|
917 |
+
if err:
|
918 |
+
raise gr.Error(f'Found error(s) in your compound SMILES input: {err}')
|
919 |
+
|
920 |
+
if library in TARGET_LIBRARY_MAP.keys():
|
921 |
+
identify_df = pd.read_csv(TARGET_LIBRARY_MAP['target_library'])
|
922 |
+
else:
|
923 |
+
identify_df = pd.read_csv(library_upload)
|
924 |
+
validate_columns(identify_df, ['X2'])
|
925 |
+
|
926 |
+
identify_df['X1'] = smiles
|
927 |
+
|
928 |
+
job_id = uuid4()
|
929 |
+
temp_file = Path(f'{job_id}_temp.csv').resolve()
|
930 |
+
identify_df.to_csv(temp_file)
|
931 |
+
if temp_file.is_file():
|
932 |
+
return {identify_data_for_predict: str(temp_file),
|
933 |
+
identify_flag: gr.State(job_id),
|
934 |
+
run_state: gr.State(job_id)}
|
935 |
+
|
936 |
+
else:
|
937 |
+
gr.Warning('You have another prediction job '
|
938 |
+
'(drug hit screening, target protein identification, or interation pair inference) '
|
939 |
+
'running in the session right now. '
|
940 |
+
'Please submit another job when your current job has finished.')
|
941 |
+
return {identify_flag: False}
|
942 |
+
|
943 |
+
|
944 |
+
def pair_infer_validate(drug_target_pair_upload, run_state):
|
945 |
+
if not run_state:
|
946 |
+
df = pd.read_csv(drug_target_pair_upload)
|
947 |
+
validate_columns(df, ['X1', 'X2'])
|
948 |
+
df['X1_ERR'] = df['X1'].swifter.apply(
|
949 |
+
validate_seq_str, regex=SMILES_PAT)
|
950 |
+
df['X2_ERR'] = df['X2'].swifter.apply(
|
951 |
+
validate_seq_str, regex=FASTA_PAT)
|
952 |
+
|
953 |
+
if not df['X1_ERR'].isna().all():
|
954 |
+
raise gr.Error(f"Encountered invalid SMILES:\n{df[~df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
|
955 |
+
if not df['X2_ERR'].isna().all():
|
956 |
+
raise gr.Error(f"Encountered invalid FASTA:\n{df[~df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
|
957 |
+
|
958 |
+
job_id = uuid4()
|
959 |
+
return {infer_flag: gr.State(job_id),
|
960 |
+
run_state: gr.State(job_id)}
|
961 |
+
|
962 |
+
else:
|
963 |
+
gr.Warning('You have another prediction job '
|
964 |
+
'(drug hit screening, target protein identification, or interation pair inference) '
|
965 |
+
'running in the session right now. '
|
966 |
+
'Please submit another job when your current job has finished.')
|
967 |
+
return {infer_flag: False}
|
968 |
+
|
969 |
+
|
970 |
+
drug_screen_btn.click(
|
971 |
+
fn=drug_screen_validate,
|
972 |
+
inputs=[target_fasta, drug_library, drug_library_upload, run_state], # , drug_screen_email],
|
973 |
+
outputs=[screen_data_for_predict, screen_flag, run_state]
|
974 |
+
).then(
|
975 |
+
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
|
976 |
+
outputs=[screen_page, screen_waiting]
|
977 |
+
).then(
|
978 |
+
fn=submit_predict,
|
979 |
+
inputs=[screen_data_for_predict, drug_screen_task, drug_screen_preset,
|
980 |
+
drug_screen_target_family, screen_flag], # , drug_screen_email],
|
981 |
+
outputs=[file_for_report, run_state]
|
982 |
+
).then(
|
983 |
+
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False)],
|
984 |
+
outputs=[screen_page, screen_waiting]
|
985 |
+
)
|
986 |
+
|
987 |
+
target_identify_btn.click(
|
988 |
+
fn=target_identify_validate,
|
989 |
+
inputs=[drug_smiles, target_library, target_library_upload, run_state], # , drug_screen_email],
|
990 |
+
outputs=[identify_data_for_predict, identify_flag, run_state]
|
991 |
+
).then(
|
992 |
+
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
|
993 |
+
outputs=[identify_page, identify_waiting]
|
994 |
+
).then(
|
995 |
+
fn=submit_predict,
|
996 |
+
inputs=[identify_data_for_predict, target_identify_task, target_identify_preset,
|
997 |
+
target_identify_target_family, identify_flag], # , target_identify_email],
|
998 |
+
outputs=[file_for_report, run_state]
|
999 |
+
).then(
|
1000 |
+
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False)],
|
1001 |
+
outputs=[identify_page, identify_waiting]
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
pair_infer_btn.click(
|
1005 |
+
fn=pair_infer_validate,
|
1006 |
+
inputs=[infer_data_for_predict, run_state], # , drug_screen_email],
|
1007 |
+
outputs=[infer_flag, run_state]
|
1008 |
+
).then(
|
1009 |
+
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
|
1010 |
+
outputs=[infer_page, infer_waiting]
|
1011 |
+
).then(
|
1012 |
+
fn=submit_predict,
|
1013 |
+
inputs=[infer_data_for_predict, pair_infer_task, pair_infer_preset,
|
1014 |
+
pair_infer_target_family, infer_flag], # , pair_infer_email],
|
1015 |
+
outputs=[file_for_report, run_state]
|
1016 |
+
).then(
|
1017 |
+
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False)],
|
1018 |
+
outputs=[infer_page, infer_waiting]
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
# TODO background job from these 3 pipelines to update file_for_report
|
1022 |
+
|
1023 |
+
file_for_report.change(fn=update_df, inputs=file_for_report, outputs=[html_report, ranking_pie_chart])
|
1024 |
+
|
1025 |
+
analyze_btn.click(fn=submit_report, inputs=[scores, filters], outputs=[html_report, ranking_pie_chart])
|
1026 |
+
|
1027 |
+
# screen_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report],
|
1028 |
+
# every=5)
|
1029 |
+
# identify_waiting.change(fn=check_job_status, inputs=run_state, outputs=[identify_waiting, tabs, file_for_report],
|
1030 |
+
# every=5)
|
1031 |
+
# pair_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report],
|
1032 |
+
# every=5)
|
1033 |
+
|
1034 |
+
# demo.load(None, None, None, js="() => {document.body.classList.remove('dark')}")
|
1035 |
+
|
1036 |
+
if __name__ == "__main__":
|
1037 |
+
screen_block.queue(max_size=2)
|
1038 |
+
identify_block.queue(max_size=2)
|
1039 |
+
infer_block.queue(max_size=2)
|
1040 |
+
report.queue(max_size=20)
|
1041 |
|
1042 |
+
# SCHEDULER.add_job(func=file_cleanup(), trigger="interval", seconds=60)
|
1043 |
+
# SCHEDULER.start()
|
1044 |
|
1045 |
+
demo.launch(
|
1046 |
+
# debug=True,
|
1047 |
+
show_api=False,
|
1048 |
+
# favicon_path=,
|
1049 |
+
# inline=False
|
1050 |
+
debug=True
|
1051 |
+
)
|
data/drug_libraries/drugbank_human_py_annot.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e9e965d0fe672b2d9299bbe507c74eba610b2aaf89326424991ba1c46fdabb3
|
3 |
+
size 11047747
|
data/target_libraries/ChEMBL33_all_spe_single_prot_info.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deepscreen/__init__.py
CHANGED
@@ -20,9 +20,9 @@ OmegaConf.register_new_resolver("eval", eval)
|
|
20 |
|
21 |
def sanitize_path(path_str: str):
|
22 |
"""
|
23 |
-
Sanitize a string for path creation by replacing unsafe characters.
|
24 |
"""
|
25 |
-
return path_str.replace("/", ".").replace("\\", ".").replace(":", "-")
|
26 |
|
27 |
|
28 |
OmegaConf.register_new_resolver("sanitize_path", sanitize_path)
|
|
|
20 |
|
21 |
def sanitize_path(path_str: str):
|
22 |
"""
|
23 |
+
Sanitize a string for path creation by replacing unsafe characters and cutting length to 255 (OS limitation).
|
24 |
"""
|
25 |
+
return path_str.replace("/", ".").replace("\\", ".").replace(":", "-")[:255]
|
26 |
|
27 |
|
28 |
OmegaConf.register_new_resolver("sanitize_path", sanitize_path)
|
deepscreen/__pycache__/__init__.cpython-311.pyc
CHANGED
Binary files a/deepscreen/__pycache__/__init__.cpython-311.pyc and b/deepscreen/__pycache__/__init__.cpython-311.pyc differ
|
|
deepscreen/__pycache__/train.cpython-311.pyc
CHANGED
Binary files a/deepscreen/__pycache__/train.cpython-311.pyc and b/deepscreen/__pycache__/train.cpython-311.pyc differ
|
|
deepscreen/data/__pycache__/dti.cpython-311.pyc
CHANGED
Binary files a/deepscreen/data/__pycache__/dti.cpython-311.pyc and b/deepscreen/data/__pycache__/dti.cpython-311.pyc differ
|
|
deepscreen/data/dti.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from functools import partial
|
2 |
from numbers import Number
|
3 |
from pathlib import Path
|
@@ -5,6 +6,7 @@ from typing import Any, Dict, Optional, Sequence, Union, Literal
|
|
5 |
|
6 |
from lightning import LightningDataModule
|
7 |
import pandas as pd
|
|
|
8 |
from sklearn.preprocessing import LabelEncoder
|
9 |
from torch.utils.data import Dataset, DataLoader
|
10 |
|
@@ -13,9 +15,33 @@ from deepscreen.utils import get_logger
|
|
13 |
|
14 |
log = get_logger(__name__)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# TODO: save a list of corrupted records
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
class DTIDataset(Dataset):
|
21 |
def __init__(
|
@@ -27,6 +53,7 @@ class DTIDataset(Dataset):
|
|
27 |
protein_featurizer: callable,
|
28 |
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
|
29 |
discard_intermediate: Optional[bool] = False,
|
|
|
30 |
):
|
31 |
df = pd.read_csv(
|
32 |
data_path,
|
@@ -58,40 +85,43 @@ class DTIDataset(Dataset):
|
|
58 |
# Forward-fill all non-label columns
|
59 |
df.loc[:, df.columns != 'Y'] = df.loc[:, df.columns != 'Y'].ffill(axis=0)
|
60 |
|
|
|
|
|
|
|
61 |
if 'Y' in df:
|
62 |
-
log.info(f"
|
63 |
# TODO: check sklearn.utils.multiclass.check_classification_targets
|
64 |
match task:
|
65 |
case 'regression':
|
66 |
-
assert all(df['Y'].apply(lambda x: isinstance(x, Number))), \
|
67 |
f"""`Y` must be numeric for `regression` task,
|
68 |
-
but it has {set(df['Y'].apply(type))}."""
|
69 |
|
70 |
case 'binary':
|
71 |
if all(df['Y'].isin([0, 1])):
|
72 |
assert not thresholds, \
|
73 |
f"""`Y` is already 0 or 1 for `binary` (classification) `task`,
|
74 |
-
but still got `thresholds` {thresholds}.
|
75 |
-
Double check your choices of `task` and `thresholds
|
76 |
else:
|
77 |
assert thresholds, \
|
78 |
f"""`Y` must be 0 or 1 for `binary` (classification) `task`,
|
79 |
-
but it has {pd.unique(df['Y'])}.
|
80 |
-
You
|
81 |
|
82 |
case 'multiclass':
|
83 |
assert num_classes >= 3, f'`num_classes` for `task=multiclass` must be at least 3.'
|
84 |
|
85 |
-
if all(df['Y'].apply(lambda x: x.is_integer() and x >= 0)):
|
86 |
assert not thresholds, \
|
87 |
f"""`Y` is already non-negative integers for
|
88 |
-
`multiclass` (classification) `task`, but still got `thresholds` {thresholds}.
|
89 |
Double check your choice of `task`, `thresholds` and records in the `Y` column."""
|
90 |
else:
|
91 |
assert thresholds, \
|
92 |
f"""`Y` must be non-negative integers for
|
93 |
`multiclass` (classification) 'task',but it has {pd.unique(df['Y'])}.
|
94 |
-
You must set `thresholds` to discretize continuous labels."""
|
95 |
|
96 |
if 'U' in df.columns:
|
97 |
units = df['U']
|
@@ -107,37 +137,51 @@ class DTIDataset(Dataset):
|
|
107 |
# Filter out rows with a NaN in Y (missing values)
|
108 |
df.dropna(subset=['Y'], inplace=True)
|
109 |
|
110 |
-
log.info(f"Performing post-transformation target validation.")
|
111 |
match task:
|
112 |
case 'regression':
|
113 |
df['Y'] = df['Y'].astype('float32')
|
114 |
-
assert all(df['Y'].apply(lambda x: isinstance(x, Number))), \
|
115 |
f"""`Y` must be numeric for `regression` task,
|
116 |
-
but after transformation it still has {set(df['Y'].apply(type))}.
|
117 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
118 |
-
|
119 |
case 'binary':
|
120 |
df['Y'] = df['Y'].astype('int')
|
121 |
assert all(df['Y'].isin([0, 1])), \
|
122 |
f"""`Y` must be 0 or 1 for `task=binary`, "
|
123 |
but after transformation it still has {pd.unique(df['Y'])}.
|
124 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
125 |
-
|
126 |
case 'multiclass':
|
127 |
df['Y'] = df['Y'].astype('int')
|
128 |
-
assert all(df['Y'].apply(lambda x: x.is_integer() and x >= 0)), \
|
129 |
f"""Y must be non-negative integers for `task=multiclass`
|
130 |
but after transformation it still has {pd.unique(df['Y'])}.
|
131 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
132 |
-
|
133 |
target_n_unique = df['Y'].nunique()
|
134 |
assert target_n_unique == num_classes, \
|
135 |
f"""You have set `num_classes` for `task=multiclass` to {num_classes},
|
136 |
but after transformation Y still has {target_n_unique} unique labels.
|
137 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
138 |
|
139 |
-
|
140 |
-
df['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
self.df = df
|
143 |
self.drug_featurizer = drug_featurizer if drug_featurizer is not None else (lambda x: x)
|
@@ -151,13 +195,13 @@ class DTIDataset(Dataset):
|
|
151 |
return {
|
152 |
'N': i,
|
153 |
'X1': sample['X1'],
|
154 |
-
'X1^': self.drug_featurizer(sample['X1']),
|
155 |
-
'ID1': sample.get('ID1'
|
156 |
'X2': sample['X2'],
|
157 |
'X2^': self.protein_featurizer(sample['X2']),
|
158 |
-
'ID2': sample.get('ID2'
|
159 |
'Y': sample.get('Y'),
|
160 |
-
'
|
161 |
}
|
162 |
|
163 |
|
|
|
1 |
+
import re
|
2 |
from functools import partial
|
3 |
from numbers import Number
|
4 |
from pathlib import Path
|
|
|
6 |
|
7 |
from lightning import LightningDataModule
|
8 |
import pandas as pd
|
9 |
+
import swifter
|
10 |
from sklearn.preprocessing import LabelEncoder
|
11 |
from torch.utils.data import Dataset, DataLoader
|
12 |
|
|
|
15 |
|
16 |
log = get_logger(__name__)
|
17 |
|
18 |
+
SMILES_PAT = r"[^A-Za-z0-9=#:+\-\[\]<>()/\\@%,.*]"
|
19 |
+
FASTA_PAT = r"[^A-Z*\-]"
|
20 |
+
|
21 |
+
|
22 |
+
def validate_seq_str(seq, regex):
|
23 |
+
if seq:
|
24 |
+
err_charset = set(re.findall(regex, seq))
|
25 |
+
if not err_charset:
|
26 |
+
return None
|
27 |
+
else:
|
28 |
+
return ', '.join(err_charset)
|
29 |
+
else:
|
30 |
+
return 'Empty string'
|
31 |
+
|
32 |
|
33 |
# TODO: save a list of corrupted records
|
34 |
|
35 |
+
def rdkit_canonicalize(smiles):
|
36 |
+
from rdkit import Chem
|
37 |
+
try:
|
38 |
+
mol = Chem.MolFromSmiles(smiles)
|
39 |
+
cano_smiles = Chem.MolToSmiles(mol)
|
40 |
+
return cano_smiles
|
41 |
+
except Exception as e:
|
42 |
+
log.warning(f'Failed to canonicalize SMILES using RDKIT due to {str(e)}. Returning original SMILES: {smiles}')
|
43 |
+
return smiles
|
44 |
+
|
45 |
|
46 |
class DTIDataset(Dataset):
|
47 |
def __init__(
|
|
|
53 |
protein_featurizer: callable,
|
54 |
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
|
55 |
discard_intermediate: Optional[bool] = False,
|
56 |
+
query: Optional[str] = 'X2'
|
57 |
):
|
58 |
df = pd.read_csv(
|
59 |
data_path,
|
|
|
85 |
# Forward-fill all non-label columns
|
86 |
df.loc[:, df.columns != 'Y'] = df.loc[:, df.columns != 'Y'].ffill(axis=0)
|
87 |
|
88 |
+
# TODO potentially allow running through the whole data validation process
|
89 |
+
# error = False
|
90 |
+
|
91 |
if 'Y' in df:
|
92 |
+
log.info(f"Validating labels (`Y`)...")
|
93 |
# TODO: check sklearn.utils.multiclass.check_classification_targets
|
94 |
match task:
|
95 |
case 'regression':
|
96 |
+
assert all(df['Y'].swifter.apply(lambda x: isinstance(x, Number))), \
|
97 |
f"""`Y` must be numeric for `regression` task,
|
98 |
+
but it has {set(df['Y'].swifter.apply(type))}."""
|
99 |
|
100 |
case 'binary':
|
101 |
if all(df['Y'].isin([0, 1])):
|
102 |
assert not thresholds, \
|
103 |
f"""`Y` is already 0 or 1 for `binary` (classification) `task`,
|
104 |
+
but still got `thresholds` ({thresholds}).
|
105 |
+
Double check your choices of `task` and `thresholds`, and records in the `Y` column."""
|
106 |
else:
|
107 |
assert thresholds, \
|
108 |
f"""`Y` must be 0 or 1 for `binary` (classification) `task`,
|
109 |
+
but it has {pd.unique(df['Y'])}.
|
110 |
+
You may set `thresholds` to discretize continuous labels.""" # TODO print err idx instead
|
111 |
|
112 |
case 'multiclass':
|
113 |
assert num_classes >= 3, f'`num_classes` for `task=multiclass` must be at least 3.'
|
114 |
|
115 |
+
if all(df['Y'].swifter.apply(lambda x: x.is_integer() and x >= 0)):
|
116 |
assert not thresholds, \
|
117 |
f"""`Y` is already non-negative integers for
|
118 |
+
`multiclass` (classification) `task`, but still got `thresholds` ({thresholds}).
|
119 |
Double check your choice of `task`, `thresholds` and records in the `Y` column."""
|
120 |
else:
|
121 |
assert thresholds, \
|
122 |
f"""`Y` must be non-negative integers for
|
123 |
`multiclass` (classification) 'task',but it has {pd.unique(df['Y'])}.
|
124 |
+
You must set `thresholds` to discretize continuous labels.""" # TODO print err idx instead
|
125 |
|
126 |
if 'U' in df.columns:
|
127 |
units = df['U']
|
|
|
137 |
# Filter out rows with a NaN in Y (missing values)
|
138 |
df.dropna(subset=['Y'], inplace=True)
|
139 |
|
|
|
140 |
match task:
|
141 |
case 'regression':
|
142 |
df['Y'] = df['Y'].astype('float32')
|
143 |
+
assert all(df['Y'].swifter.apply(lambda x: isinstance(x, Number))), \
|
144 |
f"""`Y` must be numeric for `regression` task,
|
145 |
+
but after transformation it still has {set(df['Y'].swifter.apply(type))}.
|
146 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
147 |
+
# TODO print err idx instead
|
148 |
case 'binary':
|
149 |
df['Y'] = df['Y'].astype('int')
|
150 |
assert all(df['Y'].isin([0, 1])), \
|
151 |
f"""`Y` must be 0 or 1 for `task=binary`, "
|
152 |
but after transformation it still has {pd.unique(df['Y'])}.
|
153 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
154 |
+
# TODO print err idx instead
|
155 |
case 'multiclass':
|
156 |
df['Y'] = df['Y'].astype('int')
|
157 |
+
assert all(df['Y'].swifter.apply(lambda x: x.is_integer() and x >= 0)), \
|
158 |
f"""Y must be non-negative integers for `task=multiclass`
|
159 |
but after transformation it still has {pd.unique(df['Y'])}.
|
160 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
161 |
+
# TODO print err idx instead
|
162 |
target_n_unique = df['Y'].nunique()
|
163 |
assert target_n_unique == num_classes, \
|
164 |
f"""You have set `num_classes` for `task=multiclass` to {num_classes},
|
165 |
but after transformation Y still has {target_n_unique} unique labels.
|
166 |
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
|
167 |
|
168 |
+
log.info("Validating SMILES (`X1`)...")
|
169 |
+
df['X1_ERR'] = df['X1'].swifter.progress_bar(
|
170 |
+
desc="Validating SMILES...").apply(validate_seq_str, regex=SMILES_PAT)
|
171 |
+
if not df['X1_ERR'].isna().all():
|
172 |
+
raise Exception(f"Encountered invalid SMILES:\n{df[~df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
|
173 |
+
df['X1^'] = df['X1'].apply(rdkit_canonicalize) # swifter
|
174 |
+
|
175 |
+
log.info("Validating FASTA (`X2`)...")
|
176 |
+
df['X2'] = df['X2'].str.upper()
|
177 |
+
df['X2_ERR'] = df['X2'].swifter.progress_bar(
|
178 |
+
desc="Validating FASTA...").apply(validate_seq_str, regex=FASTA_PAT)
|
179 |
+
if not df['X2_ERR'].isna().all():
|
180 |
+
raise Exception(f"Encountered invalid FASTA:\n{df[~df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
|
181 |
+
|
182 |
+
# FASTA/SMILES indices as query for retrieval metrics like enrichment factor and hit rate
|
183 |
+
if query:
|
184 |
+
df['ID^'] = LabelEncoder().fit_transform(df[query])
|
185 |
|
186 |
self.df = df
|
187 |
self.drug_featurizer = drug_featurizer if drug_featurizer is not None else (lambda x: x)
|
|
|
195 |
return {
|
196 |
'N': i,
|
197 |
'X1': sample['X1'],
|
198 |
+
'X1^': self.drug_featurizer(sample['X1^']),
|
199 |
+
'ID1': sample.get('ID1'),
|
200 |
'X2': sample['X2'],
|
201 |
'X2^': self.protein_featurizer(sample['X2']),
|
202 |
+
'ID2': sample.get('ID2'),
|
203 |
'Y': sample.get('Y'),
|
204 |
+
'ID^': sample.get('ID^'),
|
205 |
}
|
206 |
|
207 |
|
deepscreen/data/featurizers/__pycache__/__init__.cpython-311.pyc
CHANGED
Binary files a/deepscreen/data/featurizers/__pycache__/__init__.cpython-311.pyc and b/deepscreen/data/featurizers/__pycache__/__init__.cpython-311.pyc differ
|
|
deepscreen/data/featurizers/__pycache__/categorical.cpython-311.pyc
CHANGED
Binary files a/deepscreen/data/featurizers/__pycache__/categorical.cpython-311.pyc and b/deepscreen/data/featurizers/__pycache__/categorical.cpython-311.pyc differ
|
|
deepscreen/data/featurizers/__pycache__/graph.cpython-311.pyc
CHANGED
Binary files a/deepscreen/data/featurizers/__pycache__/graph.cpython-311.pyc and b/deepscreen/data/featurizers/__pycache__/graph.cpython-311.pyc differ
|
|
deepscreen/data/featurizers/__pycache__/token.cpython-311.pyc
CHANGED
Binary files a/deepscreen/data/featurizers/__pycache__/token.cpython-311.pyc and b/deepscreen/data/featurizers/__pycache__/token.cpython-311.pyc differ
|
|
deepscreen/data/featurizers/categorical.py
CHANGED
@@ -2,20 +2,20 @@ import numpy as np
|
|
2 |
|
3 |
# Sets of KNOWN characters in SMILES and FASTA sequences
|
4 |
# Use list instead of set to preserve character order
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
|
13 |
# Check uniqueness, create character-index dicts, and add '?' for unknown characters as index 0
|
14 |
-
assert len(
|
15 |
-
SMILES_CHARSET_IDX = {character: index+1 for index, character in enumerate(
|
16 |
|
17 |
-
assert len(
|
18 |
-
FASTA_CHARSET_IDX = {character: index+1 for index, character in enumerate(
|
19 |
|
20 |
|
21 |
def sequence_to_onehot(sequence: str, charset, max_sequence_length: int):
|
@@ -40,7 +40,7 @@ def sequence_to_label(sequence: str, charset, max_sequence_length: int):
|
|
40 |
return label
|
41 |
|
42 |
|
43 |
-
def smiles_to_onehot(smiles: str, smiles_charset=
|
44 |
# assert len(SMILES_CHARSET) == len(set(SMILES_CHARSET)), 'SMILES_CHARSET has duplicate characters.'
|
45 |
# onehot = np.zeros((max_sequence_length, len(SMILES_CHARSET_IDX)))
|
46 |
# for index, character in enumerate(smiles[:max_sequence_length]):
|
@@ -49,7 +49,7 @@ def smiles_to_onehot(smiles: str, smiles_charset=SMILES_CHARSET, max_sequence_le
|
|
49 |
return sequence_to_onehot(smiles, smiles_charset, max_sequence_length)
|
50 |
|
51 |
|
52 |
-
def smiles_to_label(smiles: str, smiles_charset=
|
53 |
# label = np.zeros(max_sequence_length)
|
54 |
# for index, character in enumerate(smiles[:max_sequence_length]):
|
55 |
# label[index] = SMILES_CHARSET_IDX.get(character, 0)
|
@@ -57,7 +57,7 @@ def smiles_to_label(smiles: str, smiles_charset=SMILES_CHARSET, max_sequence_len
|
|
57 |
return sequence_to_label(smiles, smiles_charset, max_sequence_length)
|
58 |
|
59 |
|
60 |
-
def fasta_to_onehot(fasta: str, fasta_charset=
|
61 |
# onehot = np.zeros((max_sequence_length, len(FASTA_CHARSET_IDX)))
|
62 |
# for index, character in enumerate(fasta[:max_sequence_length]):
|
63 |
# onehot[index, FASTA_CHARSET_IDX.get(character, 0)] = 1
|
@@ -65,7 +65,7 @@ def fasta_to_onehot(fasta: str, fasta_charset=FASTA_CHARSET, max_sequence_length
|
|
65 |
return sequence_to_onehot(fasta, fasta_charset, max_sequence_length)
|
66 |
|
67 |
|
68 |
-
def fasta_to_label(fasta: str, fasta_charset=
|
69 |
# label = np.zeros(max_sequence_length)
|
70 |
# for index, character in enumerate(fasta[:max_sequence_length]):
|
71 |
# label[index] = FASTA_CHARSET_IDX.get(character, 0)
|
|
|
2 |
|
3 |
# Sets of KNOWN characters in SMILES and FASTA sequences
|
4 |
# Use list instead of set to preserve character order
|
5 |
+
SMILES_VOCAB = ('#', '%', ')', '(', '+', '-', '.', '1', '0', '3', '2', '5', '4',
|
6 |
+
'7', '6', '9', '8', '=', 'A', 'C', 'B', 'E', 'D', 'G', 'F', 'I',
|
7 |
+
'H', 'K', 'M', 'L', 'O', 'N', 'P', 'S', 'R', 'U', 'T', 'W', 'V',
|
8 |
+
'Y', '[', 'Z', ']', '_', 'a', 'c', 'b', 'e', 'd', 'g', 'f', 'i',
|
9 |
+
'h', 'm', 'l', 'o', 'n', 's', 'r', 'u', 't', 'y')
|
10 |
+
FASTA_VOCAB = ('A', 'C', 'B', 'E', 'D', 'G', 'F', 'I', 'H', 'K', 'M', 'L', 'O',
|
11 |
+
'N', 'Q', 'P', 'S', 'R', 'U', 'T', 'W', 'V', 'Y', 'X', 'Z')
|
12 |
|
13 |
# Check uniqueness, create character-index dicts, and add '?' for unknown characters as index 0
|
14 |
+
assert len(SMILES_VOCAB) == len(set(SMILES_VOCAB)), 'SMILES_CHARSET has duplicate characters.'
|
15 |
+
SMILES_CHARSET_IDX = {character: index+1 for index, character in enumerate(SMILES_VOCAB)} | {'?': 0}
|
16 |
|
17 |
+
assert len(FASTA_VOCAB) == len(set(FASTA_VOCAB)), 'FASTA_CHARSET has duplicate characters.'
|
18 |
+
FASTA_CHARSET_IDX = {character: index+1 for index, character in enumerate(FASTA_VOCAB)} | {'?': 0}
|
19 |
|
20 |
|
21 |
def sequence_to_onehot(sequence: str, charset, max_sequence_length: int):
|
|
|
40 |
return label
|
41 |
|
42 |
|
43 |
+
def smiles_to_onehot(smiles: str, smiles_charset=SMILES_VOCAB, max_sequence_length: int = 100): # , in_channels: int = len(SMILES_CHARSET)
|
44 |
# assert len(SMILES_CHARSET) == len(set(SMILES_CHARSET)), 'SMILES_CHARSET has duplicate characters.'
|
45 |
# onehot = np.zeros((max_sequence_length, len(SMILES_CHARSET_IDX)))
|
46 |
# for index, character in enumerate(smiles[:max_sequence_length]):
|
|
|
49 |
return sequence_to_onehot(smiles, smiles_charset, max_sequence_length)
|
50 |
|
51 |
|
52 |
+
def smiles_to_label(smiles: str, smiles_charset=SMILES_VOCAB, max_sequence_length: int = 100): # , in_channels: int = len(SMILES_CHARSET)
|
53 |
# label = np.zeros(max_sequence_length)
|
54 |
# for index, character in enumerate(smiles[:max_sequence_length]):
|
55 |
# label[index] = SMILES_CHARSET_IDX.get(character, 0)
|
|
|
57 |
return sequence_to_label(smiles, smiles_charset, max_sequence_length)
|
58 |
|
59 |
|
60 |
+
def fasta_to_onehot(fasta: str, fasta_charset=FASTA_VOCAB, max_sequence_length: int = 1000): # in_channels: int = len(FASTA_CHARSET)
|
61 |
# onehot = np.zeros((max_sequence_length, len(FASTA_CHARSET_IDX)))
|
62 |
# for index, character in enumerate(fasta[:max_sequence_length]):
|
63 |
# onehot[index, FASTA_CHARSET_IDX.get(character, 0)] = 1
|
|
|
65 |
return sequence_to_onehot(fasta, fasta_charset, max_sequence_length)
|
66 |
|
67 |
|
68 |
+
def fasta_to_label(fasta: str, fasta_charset=FASTA_VOCAB, max_sequence_length: int = 1000): # in_channels: int = len(FASTA_CHARSET)
|
69 |
# label = np.zeros(max_sequence_length)
|
70 |
# for index, character in enumerate(fasta[:max_sequence_length]):
|
71 |
# label[index] = FASTA_CHARSET_IDX.get(character, 0)
|
deepscreen/data/featurizers/monn.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import numpy as np
|
2 |
from rdkit.Chem import MolFromSmiles
|
3 |
|
4 |
-
from deepscreen.data.featurizers.categorical import
|
5 |
from deepscreen.data.featurizers.graph import atom_features, bond_features
|
6 |
|
7 |
|
|
|
1 |
import numpy as np
|
2 |
from rdkit.Chem import MolFromSmiles
|
3 |
|
4 |
+
from deepscreen.data.featurizers.categorical import FASTA_VOCAB, fasta_to_label
|
5 |
from deepscreen.data.featurizers.graph import atom_features, bond_features
|
6 |
|
7 |
|
deepscreen/data/featurizers/token.py
CHANGED
@@ -7,13 +7,12 @@ from typing import Optional, List
|
|
7 |
import numpy as np
|
8 |
from transformers import BertTokenizer
|
9 |
|
10 |
-
SMI_REGEX_PATTERN = r"""(
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
)"""
|
17 |
|
18 |
|
19 |
def sequence_to_kmers(sequence, k=3):
|
@@ -30,17 +29,21 @@ def sequence_to_kmers(sequence, k=3):
|
|
30 |
|
31 |
def sequence_to_word_embedding(sequence, model):
|
32 |
"""Get protein embedding, infer a list of 3-mers to (num_word, 100) matrix"""
|
33 |
-
|
|
|
34 |
i = 0
|
35 |
-
for word in
|
36 |
-
|
|
|
|
|
|
|
37 |
i += 1
|
38 |
return vec
|
39 |
|
40 |
|
41 |
def sequence_to_token_ids(sequence, tokenizer):
|
42 |
token_ids = tokenizer.encode(sequence)
|
43 |
-
return token_ids
|
44 |
|
45 |
|
46 |
# def sequence_to_token_ids(sequence, tokenizer, max_length: int):
|
@@ -59,14 +62,14 @@ class SmilesTokenizer(BertTokenizer):
|
|
59 |
|
60 |
Creates the SmilesTokenizer class. The tokenizer heavily inherits from the BertTokenizer
|
61 |
implementation found in Huggingface's transformers library. It runs a WordPiece tokenization
|
62 |
-
algorithm over SMILES strings using the
|
63 |
|
64 |
Please see https://github.com/huggingface/transformers
|
65 |
and https://github.com/rxn4chemistry/rxnfp for more details.
|
66 |
|
67 |
Examples
|
68 |
--------
|
69 |
-
>>> tokenizer = SmilesTokenizer(vocab_path)
|
70 |
>>> print(tokenizer.encode("CC(=O)OC1=CC=CC=C1C(=O)O"))
|
71 |
[12, 16, 16, 17, 22, 19, 18, 19, 16, 20, 22, 16, 16, 22, 16, 16, 22, 16, 20, 16, 17, 22, 19, 18, 19, 13]
|
72 |
|
@@ -81,9 +84,10 @@ class SmilesTokenizer(BertTokenizer):
|
|
81 |
----
|
82 |
This class requires huggingface's transformers and tokenizers libraries to be installed.
|
83 |
"""
|
|
|
84 |
def __init__(
|
85 |
self,
|
86 |
-
vocab_file: str = '',
|
87 |
regex_pattern: str = SMI_REGEX_PATTERN,
|
88 |
# unk_token="[UNK]",
|
89 |
# sep_token="[SEP]",
|
|
|
7 |
import numpy as np
|
8 |
from transformers import BertTokenizer
|
9 |
|
10 |
+
SMI_REGEX_PATTERN = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
|
11 |
+
# \[[^\]]+\] # match anything inside square brackets
|
12 |
+
# |Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p # match elements
|
13 |
+
# |\(|\) # match parentheses
|
14 |
+
# |\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2} # match various symbols
|
15 |
+
# |[0-9] # match digits
|
|
|
16 |
|
17 |
|
18 |
def sequence_to_kmers(sequence, k=3):
|
|
|
29 |
|
30 |
def sequence_to_word_embedding(sequence, model):
|
31 |
"""Get protein embedding, infer a list of 3-mers to (num_word, 100) matrix"""
|
32 |
+
kmers = sequence_to_kmers(sequence)
|
33 |
+
vec = np.zeros((len(kmers), 100))
|
34 |
i = 0
|
35 |
+
for word in kmers:
|
36 |
+
try:
|
37 |
+
vec[i,] = model.wv[word]
|
38 |
+
except KeyError:
|
39 |
+
pass
|
40 |
i += 1
|
41 |
return vec
|
42 |
|
43 |
|
44 |
def sequence_to_token_ids(sequence, tokenizer):
|
45 |
token_ids = tokenizer.encode(sequence)
|
46 |
+
return np.array(token_ids)
|
47 |
|
48 |
|
49 |
# def sequence_to_token_ids(sequence, tokenizer, max_length: int):
|
|
|
62 |
|
63 |
Creates the SmilesTokenizer class. The tokenizer heavily inherits from the BertTokenizer
|
64 |
implementation found in Huggingface's transformers library. It runs a WordPiece tokenization
|
65 |
+
algorithm over SMILES strings using the tokenization SMILES regex developed by Schwaller et al.
|
66 |
|
67 |
Please see https://github.com/huggingface/transformers
|
68 |
and https://github.com/rxn4chemistry/rxnfp for more details.
|
69 |
|
70 |
Examples
|
71 |
--------
|
72 |
+
>>> tokenizer = SmilesTokenizer(vocab_path, regex_pattern)
|
73 |
>>> print(tokenizer.encode("CC(=O)OC1=CC=CC=C1C(=O)O"))
|
74 |
[12, 16, 16, 17, 22, 19, 18, 19, 16, 20, 22, 16, 16, 22, 16, 16, 22, 16, 20, 16, 17, 22, 19, 18, 19, 13]
|
75 |
|
|
|
84 |
----
|
85 |
This class requires huggingface's transformers and tokenizers libraries to be installed.
|
86 |
"""
|
87 |
+
|
88 |
def __init__(
|
89 |
self,
|
90 |
+
vocab_file: str = 'resources/vocabs/smiles.txt',
|
91 |
regex_pattern: str = SMI_REGEX_PATTERN,
|
92 |
# unk_token="[UNK]",
|
93 |
# sep_token="[SEP]",
|
deepscreen/data/utils/__pycache__/collator.cpython-311.pyc
CHANGED
Binary files a/deepscreen/data/utils/__pycache__/collator.cpython-311.pyc and b/deepscreen/data/utils/__pycache__/collator.cpython-311.pyc differ
|
|
deepscreen/data/utils/__pycache__/label.cpython-311.pyc
CHANGED
Binary files a/deepscreen/data/utils/__pycache__/label.cpython-311.pyc and b/deepscreen/data/utils/__pycache__/label.cpython-311.pyc differ
|
|
deepscreen/data/utils/__pycache__/split.cpython-311.pyc
CHANGED
Binary files a/deepscreen/data/utils/__pycache__/split.cpython-311.pyc and b/deepscreen/data/utils/__pycache__/split.cpython-311.pyc differ
|
|
deepscreen/data/utils/collator.py
CHANGED
@@ -72,46 +72,97 @@ def collate_fn(batch, automatic_padding=False, padding_value=0):
|
|
72 |
return collate(batch, collate_fn_map=COLLATE_FN_MAP)
|
73 |
|
74 |
|
75 |
-
class VariableLengthSequence(torch.Tensor):
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
return collate(batch, collate_fn_map=COLLATE_FN_MAP)
|
73 |
|
74 |
|
75 |
+
# class VariableLengthSequence(torch.Tensor):
|
76 |
+
# """
|
77 |
+
# A custom PyTorch Tensor class that is similar to PackedSequence, except it can be directly used as a batch tensor,
|
78 |
+
# and it has an attribute called lengths, which signifies the length of each original sequence in the batch.
|
79 |
+
# """
|
80 |
+
#
|
81 |
+
# def __new__(cls, data, lengths):
|
82 |
+
# """
|
83 |
+
# Creates a new VariableLengthSequence object from the given data and lengths.
|
84 |
+
# Args:
|
85 |
+
# data (torch.Tensor): The batch collated tensor of shape (batch_size, max_length, *).
|
86 |
+
# lengths (torch.Tensor): The lengths of each original sequence in the batch of shape (batch_size,).
|
87 |
+
# Returns:
|
88 |
+
# VariableLengthSequence: A new VariableLengthSequence object.
|
89 |
+
# """
|
90 |
+
# # Check the validity of the inputs
|
91 |
+
# assert isinstance(data, torch.Tensor), "data must be a torch.Tensor"
|
92 |
+
# assert isinstance(lengths, torch.Tensor), "lengths must be a torch.Tensor"
|
93 |
+
# assert data.dim() >= 2, "data must have at least two dimensions"
|
94 |
+
# assert lengths.dim() == 1, "lengths must have one dimension"
|
95 |
+
# assert data.size(0) == lengths.size(0), "data and lengths must have the same batch size"
|
96 |
+
# assert lengths.min() > 0, "lengths must be positive"
|
97 |
+
# assert lengths.max() <= data.size(1), "lengths must not exceed the max length of data"
|
98 |
+
#
|
99 |
+
# # Create a new tensor object from data
|
100 |
+
# obj = super().__new__(cls, data)
|
101 |
+
#
|
102 |
+
# # Set the lengths attribute
|
103 |
+
# obj.lengths = lengths
|
104 |
+
#
|
105 |
+
# return obj
|
106 |
+
|
107 |
+
|
108 |
+
# class VariableLengthSequence(torch.Tensor):
|
109 |
+
# _lengths = torch.Tensor()
|
110 |
+
#
|
111 |
+
# def __new__(cls, data, lengths, *args, **kwargs):
|
112 |
+
# self = super().__new__(cls, data, *args, **kwargs)
|
113 |
+
# self.lengths = lengths
|
114 |
+
# return self
|
115 |
+
#
|
116 |
+
# def clone(self, *args, **kwargs):
|
117 |
+
# return VariableLengthSequence(super().clone(*args, **kwargs), self.lengths.clone())
|
118 |
+
#
|
119 |
+
# def new_empty(self, *size):
|
120 |
+
# return VariableLengthSequence(super().new_empty(*size), self.lengths)
|
121 |
+
#
|
122 |
+
# def to(self, *args, **kwargs):
|
123 |
+
# return VariableLengthSequence(super().to(*args, **kwargs), self.lengths.to(*args, **kwargs))
|
124 |
+
#
|
125 |
+
# def __format__(self, format_spec):
|
126 |
+
# # Convert self to a string or a number here, depending on what you need
|
127 |
+
# return self.item().__format__(format_spec)
|
128 |
+
#
|
129 |
+
# @property
|
130 |
+
# def lengths(self):
|
131 |
+
# return self._lengths
|
132 |
+
#
|
133 |
+
# @lengths.setter
|
134 |
+
# def lengths(self, lengths):
|
135 |
+
# self._lengths = lengths
|
136 |
+
#
|
137 |
+
# def cpu(self, *args, **kwargs):
|
138 |
+
# return VariableLengthSequence(super().cpu(*args, **kwargs), self.lengths.cpu(*args, **kwargs))
|
139 |
+
#
|
140 |
+
# def cuda(self, *args, **kwargs):
|
141 |
+
# return VariableLengthSequence(super().cuda(*args, **kwargs), self.lengths.cuda(*args, **kwargs))
|
142 |
+
#
|
143 |
+
# def pin_memory(self):
|
144 |
+
# return VariableLengthSequence(super().pin_memory(), self.lengths.pin_memory())
|
145 |
+
#
|
146 |
+
# def share_memory_(self):
|
147 |
+
# super().share_memory_()
|
148 |
+
# self.lengths.share_memory_()
|
149 |
+
# return self
|
150 |
+
#
|
151 |
+
# def detach_(self, *args, **kwargs):
|
152 |
+
# super().detach_(*args, **kwargs)
|
153 |
+
# self.lengths.detach_(*args, **kwargs)
|
154 |
+
# return self
|
155 |
+
#
|
156 |
+
# def detach(self, *args, **kwargs):
|
157 |
+
# return VariableLengthSequence(super().detach(*args, **kwargs), self.lengths.detach(*args, **kwargs))
|
158 |
+
#
|
159 |
+
# def record_stream(self, *args, **kwargs):
|
160 |
+
# super().record_stream(*args, **kwargs)
|
161 |
+
# self.lengths.record_stream(*args, **kwargs)
|
162 |
+
# return self
|
163 |
+
|
164 |
+
|
165 |
+
# @classmethod
|
166 |
+
# def __torch_function__(cls, func, types, args=(), kwargs=None):
|
167 |
+
# return super().__torch_function__(func, types, args, kwargs) \
|
168 |
+
# if cls.lengths is not None else torch.Tensor.__torch_function__(func, types, args, kwargs)
|
deepscreen/data/utils/label.py
CHANGED
@@ -19,6 +19,7 @@ MOLARITY_TO_POTENCY = {
|
|
19 |
}
|
20 |
|
21 |
|
|
|
22 |
def molar_to_p(labels, units):
|
23 |
assert units in MOLARITY_TO_POTENCY, f"Allowed units: {', '.join(MOLARITY_TO_POTENCY)}."
|
24 |
|
|
|
19 |
}
|
20 |
|
21 |
|
22 |
+
# TODO rewrite for swifter.apply
|
23 |
def molar_to_p(labels, units):
|
24 |
assert units in MOLARITY_TO_POTENCY, f"Allowed units: {', '.join(MOLARITY_TO_POTENCY)}."
|
25 |
|
deepscreen/gui/test.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Use this in a notebook
|
6 |
+
root = Path.cwd()
|
7 |
+
|
8 |
+
|
9 |
+
drug_encoder_list = [f.stem for f in root.parent.joinpath("configs/model/drug_encoder").iterdir() if f.suffix == ".yaml"]
|
10 |
+
|
11 |
+
drug_featurizer_list = [f.stem for f in root.parent.joinpath("configs/model/drug_featurizer").iterdir() if f.suffix == ".yaml"]
|
12 |
+
|
13 |
+
protein_encoder_list = [f.stem for f in root.parent.joinpath("configs/model/protein_encoder").iterdir() if f.suffix == ".yaml"]
|
14 |
+
|
15 |
+
protein_featurizer_list = [f.stem for f in root.parent.joinpath("configs/model/protein_featurizer").iterdir() if f.suffix == ".yaml"]
|
16 |
+
|
17 |
+
classifier_list = [f.stem for f in root.parent.joinpath("configs/model/classifier").iterdir() if f.suffix == ".yaml"]
|
18 |
+
|
19 |
+
preset_list = [f.stem for f in root.parent.joinpath("configs/model/preset").iterdir() if f.suffix == ".yaml"]
|
20 |
+
|
21 |
+
|
22 |
+
from typing import Optional
|
23 |
+
|
24 |
+
def drug_target_interaction(
|
25 |
+
binary: bool,
|
26 |
+
drug_encoder,
|
27 |
+
drug_featurizer,
|
28 |
+
protein_encoder,
|
29 |
+
protein_featurizer,
|
30 |
+
classifier,
|
31 |
+
preset,) -> Optional[float]:
|
32 |
+
|
33 |
+
|
34 |
+
return 1
|
35 |
+
|
36 |
+
def drug_encoder(
|
37 |
+
binary: bool,
|
38 |
+
drug_encoder,
|
39 |
+
drug_featurizer,
|
40 |
+
protein_encoder,
|
41 |
+
protein_featurizer,
|
42 |
+
classifier,
|
43 |
+
preset,):
|
44 |
+
|
45 |
+
return
|
46 |
+
|
47 |
+
def protein_encoder(
|
48 |
+
binary: bool,
|
49 |
+
drug_encoder,
|
50 |
+
drug_featurizer,
|
51 |
+
protein_encoder,
|
52 |
+
protein_featurizer,
|
53 |
+
classifier,
|
54 |
+
preset,):
|
55 |
+
|
56 |
+
return
|
57 |
+
|
58 |
+
# demo = gr.Interface(
|
59 |
+
# fn=drug_target_interaction,
|
60 |
+
# inputs=[
|
61 |
+
# gr.Radio(["True", "False"]),
|
62 |
+
# gr.Dropdown(drug_encoder_list),
|
63 |
+
# gr.Dropdown(drug_featurizer_list),
|
64 |
+
# gr.Dropdown(protein_encoder_list),
|
65 |
+
# gr.Dropdown(protein_featurizer_list),
|
66 |
+
# gr.Dropdown(classifier_list),
|
67 |
+
# gr.Dropdown(preset_list),
|
68 |
+
# ],
|
69 |
+
# outputs=["number"],
|
70 |
+
# show_error=True,
|
71 |
+
#
|
72 |
+
# )
|
73 |
+
#
|
74 |
+
# demo.launch()
|
75 |
+
|
76 |
+
|
77 |
+
from omegaconf import DictConfig, OmegaConf
|
78 |
+
|
79 |
+
type_to_component_map = {list: gr.Text, int: gr.Number, float: gr.Number}
|
80 |
+
|
81 |
+
|
82 |
+
def get_config_choices(config_path: str):
|
83 |
+
return [f.stem for f in Path("../../configs/", config_path).iterdir() if f.suffix == ".yaml"]
|
84 |
+
|
85 |
+
|
86 |
+
def create_blocks_from_config(cfg: DictConfig):
|
87 |
+
with gr.Blocks() as blocks:
|
88 |
+
for key, value in cfg.items():
|
89 |
+
if type(value) in [int, float]:
|
90 |
+
component = gr.Number(value=value, label=key, interactive=True)
|
91 |
+
if type(value) in [dict, DictConfig]:
|
92 |
+
with gr.Tab(label=key):
|
93 |
+
component = create_blocks_from_config(value)
|
94 |
+
else:
|
95 |
+
component = gr.Text(value=value, label=key, interactive=True)
|
96 |
+
return blocks
|
97 |
+
|
98 |
+
|
99 |
+
def create_interface_from_config(fn: callable, cfg: DictConfig):
|
100 |
+
inputs = []
|
101 |
+
|
102 |
+
for key, value in OmegaConf.to_object(cfg).items():
|
103 |
+
component = type_to_component_map.get(type(value), gr.Text)
|
104 |
+
inputs.append(component(value=value, label=key, interactive=True))
|
105 |
+
|
106 |
+
interface = gr.Interface(fn=fn, inputs=inputs, outputs="label")
|
107 |
+
|
108 |
+
return interface
|
109 |
+
|
110 |
+
|
111 |
+
import hydra
|
112 |
+
|
113 |
+
with hydra.initialize(version_base=None, config_path="../../configs/"):
|
114 |
+
cfg = hydra.compose("train")
|
deepscreen/models/__pycache__/dti.cpython-311.pyc
CHANGED
Binary files a/deepscreen/models/__pycache__/dti.cpython-311.pyc and b/deepscreen/models/__pycache__/dti.cpython-311.pyc differ
|
|
deepscreen/models/dti.py
CHANGED
@@ -66,7 +66,7 @@ class DTILightningModule(LightningModule):
|
|
66 |
def forward(self, batch):
|
67 |
output = self.predictor(batch['X1^'], batch['X2^'])
|
68 |
target = batch.get('Y')
|
69 |
-
indexes = batch.get('
|
70 |
preds = None
|
71 |
loss = None
|
72 |
|
|
|
66 |
def forward(self, batch):
|
67 |
output = self.predictor(batch['X1^'], batch['X2^'])
|
68 |
target = batch.get('Y')
|
69 |
+
indexes = batch.get('ID^')
|
70 |
preds = None
|
71 |
loss = None
|
72 |
|
deepscreen/models/loss/__pycache__/multitask_loss.cpython-311.pyc
CHANGED
Binary files a/deepscreen/models/loss/__pycache__/multitask_loss.cpython-311.pyc and b/deepscreen/models/loss/__pycache__/multitask_loss.cpython-311.pyc differ
|
|
deepscreen/models/metrics/bedroc.py
CHANGED
@@ -40,3 +40,6 @@ class BEDROC(RetrievalMetric):
|
|
40 |
rie_max = (1 - exp_a ** (-r_a)) / (r_a * (1 - exp_a ** (-1)))
|
41 |
|
42 |
return (rie - rie_min) / (rie_max - rie_min)
|
|
|
|
|
|
|
|
40 |
rie_max = (1 - exp_a ** (-r_a)) / (r_a * (1 - exp_a ** (-1)))
|
41 |
|
42 |
return (rie - rie_min) / (rie_max - rie_min)
|
43 |
+
|
44 |
+
def plot(self, val=None, ax=None):
|
45 |
+
return self._plot(val, ax)
|
deepscreen/models/metrics/ci.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchmetrics import Metric
|
3 |
+
from torchmetrics.utilities.checks import _check_same_shape
|
4 |
+
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
|
5 |
+
|
6 |
+
if not _MATPLOTLIB_AVAILABLE:
|
7 |
+
__doctest_skip__ = ["ConcordanceIndex.plot"]
|
8 |
+
|
9 |
+
|
10 |
+
class ConcordanceIndex(Metric):
|
11 |
+
is_differentiable: bool = False
|
12 |
+
higher_is_better: bool = True
|
13 |
+
full_state_update: bool = False
|
14 |
+
plot_lower_bound: float = 0.5
|
15 |
+
plot_upper_bound: float = 1.0
|
16 |
+
|
17 |
+
def __init__(self, dist_sync_on_step=False):
|
18 |
+
super().__init__(dist_sync_on_step=dist_sync_on_step)
|
19 |
+
|
20 |
+
self.add_state("num_concordant", default=torch.tensor(0), dist_reduce_fx="sum")
|
21 |
+
self.add_state("num_valid", default=torch.tensor(0), dist_reduce_fx="sum")
|
22 |
+
|
23 |
+
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
24 |
+
_check_same_shape(preds, target)
|
25 |
+
|
26 |
+
g = preds.unsqueeze(-1) - preds
|
27 |
+
g = (g == 0) * 0.5 + (g > 0)
|
28 |
+
|
29 |
+
f = (target.unsqueeze(-1) - target) > 0
|
30 |
+
f = torch.tril(f, diagonal=0)
|
31 |
+
|
32 |
+
self.num_concordant += torch.sum(torch.mul(g, f)).long()
|
33 |
+
self.num_valid += torch.sum(f).long()
|
34 |
+
|
35 |
+
def compute(self):
|
36 |
+
return torch.where(self.num_valid == 0, 0.0, self.num_concordant / self.num_valid)
|
37 |
+
|
38 |
+
def plot(self, val=None, ax=None):
|
39 |
+
return self._plot(val, ax)
|
deepscreen/models/metrics/ef.py
CHANGED
@@ -5,7 +5,7 @@ from torchmetrics.retrieval.base import RetrievalMetric
|
|
5 |
from torchmetrics.utilities.checks import _check_retrieval_functional_inputs
|
6 |
|
7 |
|
8 |
-
class
|
9 |
is_differentiable: bool = False
|
10 |
higher_is_better: bool = True
|
11 |
full_state_update: bool = False
|
@@ -29,3 +29,6 @@ class EF(RetrievalMetric):
|
|
29 |
hits_total = target.sum()
|
30 |
|
31 |
return hits_sampled / (hits_total * self.alpha)
|
|
|
|
|
|
|
|
5 |
from torchmetrics.utilities.checks import _check_retrieval_functional_inputs
|
6 |
|
7 |
|
8 |
+
class EnrichmentFactor(RetrievalMetric):
|
9 |
is_differentiable: bool = False
|
10 |
higher_is_better: bool = True
|
11 |
full_state_update: bool = False
|
|
|
29 |
hits_total = target.sum()
|
30 |
|
31 |
return hits_sampled / (hits_total * self.alpha)
|
32 |
+
|
33 |
+
def plot(self, val=None, ax=None):
|
34 |
+
return self._plot(val, ax)
|
deepscreen/models/metrics/hit_rate.py
CHANGED
@@ -31,3 +31,6 @@ class HitRate(RetrievalMetric):
|
|
31 |
hits_sampled = target[idx].sum()
|
32 |
|
33 |
return hits_sampled / n_sampled
|
|
|
|
|
|
|
|
31 |
hits_sampled = target[idx].sum()
|
32 |
|
33 |
return hits_sampled / n_sampled
|
34 |
+
|
35 |
+
def plot(self, val=None, ax=None):
|
36 |
+
return self._plot(val, ax)
|
deepscreen/models/metrics/rie.py
CHANGED
@@ -4,6 +4,13 @@ from torchmetrics.retrieval.base import RetrievalMetric
|
|
4 |
from torchmetrics.utilities.checks import _check_retrieval_functional_inputs
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
class RIE(RetrievalMetric):
|
8 |
is_differentiable: bool = False
|
9 |
higher_is_better: bool = True
|
@@ -33,9 +40,5 @@ class RIE(RetrievalMetric):
|
|
33 |
|
34 |
return calc_rie(n_total, active_ranks, r_a, exp_a)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
numerator = (exp_a ** (- active_ranks / n_total)).sum()
|
39 |
-
denominator = (1 - exp_a ** (-1)) / (exp_a ** (1 / n_total) - 1)
|
40 |
-
|
41 |
-
return numerator / (r_a * denominator)
|
|
|
4 |
from torchmetrics.utilities.checks import _check_retrieval_functional_inputs
|
5 |
|
6 |
|
7 |
+
def calc_rie(n_total, active_ranks, r_a, exp_a):
|
8 |
+
numerator = (exp_a ** (- active_ranks / n_total)).sum()
|
9 |
+
denominator = (1 - exp_a ** (-1)) / (exp_a ** (1 / n_total) - 1)
|
10 |
+
|
11 |
+
return numerator / (r_a * denominator)
|
12 |
+
|
13 |
+
|
14 |
class RIE(RetrievalMetric):
|
15 |
is_differentiable: bool = False
|
16 |
higher_is_better: bool = True
|
|
|
40 |
|
41 |
return calc_rie(n_total, active_ranks, r_a, exp_a)
|
42 |
|
43 |
+
def plot(self, val=None, ax=None):
|
44 |
+
return self._plot(val, ax)
|
|
|
|
|
|
|
|
deepscreen/models/predictors/drug_vqa.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
from math import floor
|
|
|
2 |
from typing import Literal
|
3 |
|
|
|
4 |
import torch.nn as nn
|
5 |
import torch
|
6 |
import torch.nn.functional as F
|
7 |
-
# from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence
|
8 |
|
9 |
|
10 |
def conv(in_channels, out_channels, kernel_size, conv_dim, stride=1):
|
@@ -170,6 +171,8 @@ class DrugVQA(nn.Module):
|
|
170 |
return nn.Sequential(*layers)
|
171 |
|
172 |
def forward(self, enc_drug, enc_protein):
|
|
|
|
|
173 |
smile_embed = self.embeddings(enc_drug.long())
|
174 |
# self.hidden_state = tuple(hidden_state.to(smile_embed).detach() for hidden_state in self.hidden_state)
|
175 |
outputs, hidden_state = self.lstm(smile_embed)
|
|
|
1 |
from math import floor
|
2 |
+
import re
|
3 |
from typing import Literal
|
4 |
|
5 |
+
import numpy as np
|
6 |
import torch.nn as nn
|
7 |
import torch
|
8 |
import torch.nn.functional as F
|
|
|
9 |
|
10 |
|
11 |
def conv(in_channels, out_channels, kernel_size, conv_dim, stride=1):
|
|
|
171 |
return nn.Sequential(*layers)
|
172 |
|
173 |
def forward(self, enc_drug, enc_protein):
|
174 |
+
enc_drug, _ = enc_drug
|
175 |
+
enc_protein, _ = enc_protein
|
176 |
smile_embed = self.embeddings(enc_drug.long())
|
177 |
# self.hidden_state = tuple(hidden_state.to(smile_embed).detach() for hidden_state in self.hidden_state)
|
178 |
outputs, hidden_state = self.lstm(smile_embed)
|
deepscreen/models/predictors/transformer_cpi.py
CHANGED
@@ -9,8 +9,7 @@ class TransformerCPI(nn.Module):
|
|
9 |
super().__init__()
|
10 |
|
11 |
self.encoder = Encoder(protein_dim, hidden_dim, n_layers, kernel_size, dropout)
|
12 |
-
self.decoder = Decoder(atom_dim, hidden_dim, n_layers, n_heads, pf_dim,
|
13 |
-
PositionwiseFeedforward, dropout)
|
14 |
self.weight = nn.Parameter(torch.FloatTensor(atom_dim, atom_dim))
|
15 |
self.init_weight()
|
16 |
|
@@ -23,18 +22,24 @@ class TransformerCPI(nn.Module):
|
|
23 |
# adj = [batch,num_node, num_node]
|
24 |
support = torch.matmul(input, self.weight)
|
25 |
# support =[batch,num_node,atom_dim]
|
26 |
-
output = torch.bmm(adj, support)
|
27 |
# output = [batch,num_node,atom_dim]
|
28 |
return output
|
29 |
|
30 |
-
def forward(self, compound,
|
|
|
|
|
|
|
|
|
31 |
# compound = [batch,atom_num, atom_dim]
|
32 |
# adj = [batch,atom_num, atom_num]
|
33 |
# protein = [batch,protein len, 100]
|
34 |
-
|
35 |
-
|
36 |
-
compound_mask
|
37 |
-
|
|
|
|
|
38 |
# compound = torch.unsqueeze(compound, dim=0)
|
39 |
# compound = [batch size=1 ,atom_num, atom_dim]
|
40 |
|
@@ -48,54 +53,6 @@ class TransformerCPI(nn.Module):
|
|
48 |
# out = torch.squeeze(out, dim=0)
|
49 |
return out
|
50 |
|
51 |
-
@staticmethod
|
52 |
-
def make_masks(atom_num, protein_num, compound_max_len, protein_max_len):
|
53 |
-
n_atom = len(atom_num) # batch size
|
54 |
-
compound_mask = torch.zeros((n_atom, compound_max_len))
|
55 |
-
protein_mask = torch.zeros((n_atom, protein_max_len))
|
56 |
-
for i in range(n_atom):
|
57 |
-
compound_mask[i, :atom_num[i]] = 1
|
58 |
-
protein_mask[i, :protein_num[i]] = 1
|
59 |
-
compound_mask = compound_mask.unsqueeze(1).unsqueeze(3)
|
60 |
-
protein_mask = protein_mask.unsqueeze(1).unsqueeze(2)
|
61 |
-
return compound_mask, protein_mask
|
62 |
-
|
63 |
-
@staticmethod
|
64 |
-
def pack(atoms, adjs, proteins, labels):
|
65 |
-
atoms_len = 0
|
66 |
-
proteins_len = 0
|
67 |
-
N = len(atoms)
|
68 |
-
|
69 |
-
atom_num = []
|
70 |
-
for atom in atoms:
|
71 |
-
atom_num.append(atom.shape[0])
|
72 |
-
if atom.shape[0] >= atoms_len:
|
73 |
-
atoms_len = atom.shape[0]
|
74 |
-
|
75 |
-
protein_num = []
|
76 |
-
for protein in proteins:
|
77 |
-
protein_num.append(protein.shape[0])
|
78 |
-
if protein.shape[0] >= proteins_len:
|
79 |
-
proteins_len = protein.shape[0]
|
80 |
-
|
81 |
-
atoms_new = torch.zeros((N, atoms_len, 34))
|
82 |
-
for i, atom in enumerate(atoms):
|
83 |
-
a_len = atom.shape[0]
|
84 |
-
atoms_new[i, :a_len, :] = atom
|
85 |
-
|
86 |
-
adjs_new = torch.zeros((N, atoms_len, atoms_len))
|
87 |
-
for i, adj in adjs:
|
88 |
-
a_len = adj.shape[0]
|
89 |
-
adj = adj + torch.eye(a_len)
|
90 |
-
adjs_new[i, :a_len, :a_len] = adj
|
91 |
-
|
92 |
-
proteins_new = torch.zeros((N, proteins_len, 100))
|
93 |
-
for i, protein in enumerate(proteins):
|
94 |
-
a_len = protein.shape[0]
|
95 |
-
proteins_new[i, :a_len, :] = protein
|
96 |
-
|
97 |
-
return atoms_new, adjs_new, proteins_new, atom_num, protein_num
|
98 |
-
|
99 |
|
100 |
class SelfAttention(nn.Module):
|
101 |
def __init__(self, hidden_dim, n_heads, dropout):
|
@@ -114,7 +71,7 @@ class SelfAttention(nn.Module):
|
|
114 |
|
115 |
self.do = nn.Dropout(dropout)
|
116 |
|
117 |
-
self.scale =
|
118 |
|
119 |
def forward(self, query, key, value, mask=None):
|
120 |
bsz = query.shape[0]
|
@@ -164,7 +121,6 @@ class SelfAttention(nn.Module):
|
|
164 |
|
165 |
class Encoder(nn.Module):
|
166 |
"""protein feature extraction."""
|
167 |
-
|
168 |
def __init__(self, protein_dim, hidden_dim, n_layers, kernel_size, dropout):
|
169 |
super().__init__()
|
170 |
|
@@ -176,7 +132,7 @@ class Encoder(nn.Module):
|
|
176 |
self.dropout = dropout
|
177 |
self.n_layers = n_layers
|
178 |
# self.pos_embedding = nn.Embedding(1000, hidden_dim)
|
179 |
-
self.scale =
|
180 |
self.convs = nn.ModuleList(
|
181 |
[nn.Conv1d(hidden_dim, 2 * hidden_dim, kernel_size, padding=(kernel_size - 1) // 2) for _ in
|
182 |
range(self.n_layers)]) # convolutional layers
|
@@ -189,7 +145,7 @@ class Encoder(nn.Module):
|
|
189 |
# pos = torch.arange(0, protein.shape[1]).unsqueeze(0).repeat(protein.shape[0], 1)
|
190 |
# protein = protein + self.pos_embedding(pos)
|
191 |
# protein = [batch size, protein len,protein_dim]
|
192 |
-
conv_input = self.fc(protein)
|
193 |
# conv_input=[batch size,protein len,hid dim]
|
194 |
# permute for convolutional layer
|
195 |
conv_input = conv_input.permute(0, 2, 1)
|
@@ -239,7 +195,9 @@ class PositionwiseFeedforward(nn.Module):
|
|
239 |
|
240 |
|
241 |
class DecoderLayer(nn.Module):
|
242 |
-
def __init__(self, hidden_dim, n_heads, pf_dim,
|
|
|
|
|
243 |
super().__init__()
|
244 |
self.ln = nn.LayerNorm(hidden_dim)
|
245 |
self.sa = self_attention(hidden_dim, n_heads, dropout)
|
@@ -262,8 +220,10 @@ class DecoderLayer(nn.Module):
|
|
262 |
class Decoder(nn.Module):
|
263 |
""" compound feature extraction."""
|
264 |
|
265 |
-
def __init__(self, atom_dim, hidden_dim, n_layers, n_heads, pf_dim,
|
266 |
-
|
|
|
|
|
267 |
super().__init__()
|
268 |
self.ln = nn.LayerNorm(hidden_dim)
|
269 |
self.output_dim = atom_dim
|
@@ -277,12 +237,12 @@ class Decoder(nn.Module):
|
|
277 |
self.dropout = dropout
|
278 |
self.sa = self_attention(hidden_dim, n_heads, dropout)
|
279 |
self.layers = nn.ModuleList(
|
280 |
-
[decoder_layer(hidden_dim, n_heads, pf_dim, self_attention, positionwise_feedforward
|
281 |
for _ in range(n_layers)])
|
282 |
self.ft = nn.Linear(atom_dim, hidden_dim)
|
283 |
self.do = nn.Dropout(dropout)
|
284 |
self.fc_1 = nn.Linear(hidden_dim, 256)
|
285 |
-
self.fc_2 = nn.Linear(256, 2)
|
286 |
self.gn = nn.GroupNorm(8, 256)
|
287 |
|
288 |
def forward(self, trg, src, trg_mask=None, src_mask=None):
|
@@ -297,7 +257,7 @@ class Decoder(nn.Module):
|
|
297 |
norm = F.softmax(norm, dim=1) # norm = [batch size,compound len]
|
298 |
# trg = torch.squeeze(trg,dim=0)
|
299 |
# norm = torch.squeeze(norm,dim=0)
|
300 |
-
sum = torch.zeros((trg.shape[0], self.hidden_dim))
|
301 |
for i in range(norm.shape[0]):
|
302 |
for j in range(norm.shape[1]):
|
303 |
v = trg[i, j,]
|
|
|
9 |
super().__init__()
|
10 |
|
11 |
self.encoder = Encoder(protein_dim, hidden_dim, n_layers, kernel_size, dropout)
|
12 |
+
self.decoder = Decoder(atom_dim, hidden_dim, n_layers, n_heads, pf_dim, dropout)
|
|
|
13 |
self.weight = nn.Parameter(torch.FloatTensor(atom_dim, atom_dim))
|
14 |
self.init_weight()
|
15 |
|
|
|
22 |
# adj = [batch,num_node, num_node]
|
23 |
support = torch.matmul(input, self.weight)
|
24 |
# support =[batch,num_node,atom_dim]
|
25 |
+
output = torch.bmm(adj.float(), support.float())
|
26 |
# output = [batch,num_node,atom_dim]
|
27 |
return output
|
28 |
|
29 |
+
def forward(self, compound, protein):
|
30 |
+
compound, adj = compound
|
31 |
+
compound, compound_lengths = compound
|
32 |
+
adj, _ = adj
|
33 |
+
protein, protein_lengths = protein
|
34 |
# compound = [batch,atom_num, atom_dim]
|
35 |
# adj = [batch,atom_num, atom_num]
|
36 |
# protein = [batch,protein len, 100]
|
37 |
+
compound_mask = torch.arange(compound.size(1), device=compound.device) >= compound_lengths.unsqueeze(1)
|
38 |
+
protein_mask = torch.arange(protein.size(1), device=protein.device) >= protein_lengths.unsqueeze(1)
|
39 |
+
compound_mask = compound_mask.unsqueeze(1).unsqueeze(3)
|
40 |
+
protein_mask = protein_mask.unsqueeze(1).unsqueeze(2)
|
41 |
+
|
42 |
+
compound = self.gcn(compound.float(), adj)
|
43 |
# compound = torch.unsqueeze(compound, dim=0)
|
44 |
# compound = [batch size=1 ,atom_num, atom_dim]
|
45 |
|
|
|
53 |
# out = torch.squeeze(out, dim=0)
|
54 |
return out
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
class SelfAttention(nn.Module):
|
58 |
def __init__(self, hidden_dim, n_heads, dropout):
|
|
|
71 |
|
72 |
self.do = nn.Dropout(dropout)
|
73 |
|
74 |
+
self.scale = (hidden_dim // n_heads) ** 0.5
|
75 |
|
76 |
def forward(self, query, key, value, mask=None):
|
77 |
bsz = query.shape[0]
|
|
|
121 |
|
122 |
class Encoder(nn.Module):
|
123 |
"""protein feature extraction."""
|
|
|
124 |
def __init__(self, protein_dim, hidden_dim, n_layers, kernel_size, dropout):
|
125 |
super().__init__()
|
126 |
|
|
|
132 |
self.dropout = dropout
|
133 |
self.n_layers = n_layers
|
134 |
# self.pos_embedding = nn.Embedding(1000, hidden_dim)
|
135 |
+
self.scale = 0.5 ** 0.5
|
136 |
self.convs = nn.ModuleList(
|
137 |
[nn.Conv1d(hidden_dim, 2 * hidden_dim, kernel_size, padding=(kernel_size - 1) // 2) for _ in
|
138 |
range(self.n_layers)]) # convolutional layers
|
|
|
145 |
# pos = torch.arange(0, protein.shape[1]).unsqueeze(0).repeat(protein.shape[0], 1)
|
146 |
# protein = protein + self.pos_embedding(pos)
|
147 |
# protein = [batch size, protein len,protein_dim]
|
148 |
+
conv_input = self.fc(protein.float())
|
149 |
# conv_input=[batch size,protein len,hid dim]
|
150 |
# permute for convolutional layer
|
151 |
conv_input = conv_input.permute(0, 2, 1)
|
|
|
195 |
|
196 |
|
197 |
class DecoderLayer(nn.Module):
|
198 |
+
def __init__(self, hidden_dim, n_heads, pf_dim, dropout,
|
199 |
+
self_attention=SelfAttention,
|
200 |
+
positionwise_feedforward=PositionwiseFeedforward):
|
201 |
super().__init__()
|
202 |
self.ln = nn.LayerNorm(hidden_dim)
|
203 |
self.sa = self_attention(hidden_dim, n_heads, dropout)
|
|
|
220 |
class Decoder(nn.Module):
|
221 |
""" compound feature extraction."""
|
222 |
|
223 |
+
def __init__(self, atom_dim, hidden_dim, n_layers, n_heads, pf_dim, dropout,
|
224 |
+
decoder_layer=DecoderLayer,
|
225 |
+
self_attention=SelfAttention,
|
226 |
+
positionwise_feedforward=PositionwiseFeedforward):
|
227 |
super().__init__()
|
228 |
self.ln = nn.LayerNorm(hidden_dim)
|
229 |
self.output_dim = atom_dim
|
|
|
237 |
self.dropout = dropout
|
238 |
self.sa = self_attention(hidden_dim, n_heads, dropout)
|
239 |
self.layers = nn.ModuleList(
|
240 |
+
[decoder_layer(hidden_dim, n_heads, pf_dim, dropout, self_attention, positionwise_feedforward)
|
241 |
for _ in range(n_layers)])
|
242 |
self.ft = nn.Linear(atom_dim, hidden_dim)
|
243 |
self.do = nn.Dropout(dropout)
|
244 |
self.fc_1 = nn.Linear(hidden_dim, 256)
|
245 |
+
# self.fc_2 = nn.Linear(256, 2)
|
246 |
self.gn = nn.GroupNorm(8, 256)
|
247 |
|
248 |
def forward(self, trg, src, trg_mask=None, src_mask=None):
|
|
|
257 |
norm = F.softmax(norm, dim=1) # norm = [batch size,compound len]
|
258 |
# trg = torch.squeeze(trg,dim=0)
|
259 |
# norm = torch.squeeze(norm,dim=0)
|
260 |
+
sum = torch.zeros((trg.shape[0], self.hidden_dim), device=trg.device)
|
261 |
for i in range(norm.shape[0]):
|
262 |
for j in range(norm.shape[1]):
|
263 |
v = trg[i, j,]
|
deepscreen/models/predictors/transformer_cpi_2.py
CHANGED
@@ -23,9 +23,8 @@ class TransformerCPI2(nn.Module):
|
|
23 |
# adj_mat = [batch_size, atom_num, atom_num]
|
24 |
# enc_protein = [batch_size, protein_len, 768]
|
25 |
compound, adj = compound
|
26 |
-
|
27 |
compound, compound_lengths = compound
|
28 |
-
adj, adj_lengths = adj
|
29 |
protein, protein_lengths = protein
|
30 |
|
31 |
# Add a global/master node to the compound
|
@@ -99,5 +98,5 @@ class Decoder(nn.Module):
|
|
99 |
tgt = tgt.permute(1, 0, 2).contiguous() # tgt = [batch_size, compound_len, hid_dim]
|
100 |
x = tgt[:, 0, :]
|
101 |
label = F.relu(self.fc_1(x))
|
102 |
-
label = self.fc_2(label)
|
103 |
return label
|
|
|
23 |
# adj_mat = [batch_size, atom_num, atom_num]
|
24 |
# enc_protein = [batch_size, protein_len, 768]
|
25 |
compound, adj = compound
|
26 |
+
adj, _ = adj
|
27 |
compound, compound_lengths = compound
|
|
|
28 |
protein, protein_lengths = protein
|
29 |
|
30 |
# Add a global/master node to the compound
|
|
|
98 |
tgt = tgt.permute(1, 0, 2).contiguous() # tgt = [batch_size, compound_len, hid_dim]
|
99 |
x = tgt[:, 0, :]
|
100 |
label = F.relu(self.fc_1(x))
|
101 |
+
# label = self.fc_2(label)
|
102 |
return label
|
deepscreen/utils/__pycache__/hydra.cpython-311.pyc
CHANGED
Binary files a/deepscreen/utils/__pycache__/hydra.cpython-311.pyc and b/deepscreen/utils/__pycache__/hydra.cpython-311.pyc differ
|
|
deepscreen/utils/hydra.py
CHANGED
@@ -1,8 +1,11 @@
|
|
|
|
1 |
from pathlib import Path
|
2 |
import re
|
|
|
3 |
from typing import Any, Tuple
|
4 |
|
5 |
import pandas as pd
|
|
|
6 |
from hydra.core.hydra_config import HydraConfig
|
7 |
from hydra.core.utils import _save_config
|
8 |
from hydra.experimental.callbacks import Callback
|
@@ -21,21 +24,24 @@ class CSVExperimentSummary(Callback):
|
|
21 |
self.filename = filename
|
22 |
self.prefix = prefix if isinstance(prefix, str) else tuple(prefix)
|
23 |
self.input_experiment_summary = None
|
|
|
24 |
|
25 |
def on_multirun_start(self, config: DictConfig, **kwargs: Any) -> None:
|
26 |
-
if config.hydra.get('overrides'):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
|
40 |
def on_job_end(self, config: DictConfig, job_return, **kwargs: Any) -> None:
|
41 |
# Skip callback if job is DDP subprocess
|
@@ -43,6 +49,7 @@ class CSVExperimentSummary(Callback):
|
|
43 |
return
|
44 |
|
45 |
try:
|
|
|
46 |
if config.hydra.mode == RunMode.RUN:
|
47 |
summary_file_path = Path(config.hydra.run.dir) / self.filename
|
48 |
elif config.hydra.mode == RunMode.MULTIRUN:
|
@@ -56,21 +63,23 @@ class CSVExperimentSummary(Callback):
|
|
56 |
summary_df = pd.DataFrame()
|
57 |
|
58 |
# Add job and override info
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# Add checkpoint info
|
63 |
-
if
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
if
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
override_dict['epoch'] = int(re.search(r'epoch_(\d+)', override_dict['ckpt_path']).group(1))
|
74 |
|
75 |
# Add metrics info
|
76 |
metrics_df = pd.DataFrame()
|
@@ -79,22 +88,22 @@ class CSVExperimentSummary(Callback):
|
|
79 |
csv_metrics_path = output_dir / config.logger.csv.name / "metrics.csv"
|
80 |
if csv_metrics_path.is_file():
|
81 |
log.info(f"Summarizing metrics with prefix `{self.prefix}` from {csv_metrics_path}")
|
82 |
-
# Use only columns that start with the specified prefix
|
83 |
metrics_df = pd.read_csv(csv_metrics_path)
|
84 |
-
# Find rows where
|
85 |
test_columns = [col for col in metrics_df.columns if col.startswith('test/')]
|
86 |
-
|
87 |
-
|
|
|
88 |
# Group and filter by best epoch
|
89 |
metrics_df = metrics_df.groupby('epoch').first()
|
90 |
-
metrics_df = metrics_df[metrics_df.index ==
|
91 |
else:
|
92 |
log.info(f"No metrics.csv found in {output_dir}")
|
93 |
|
94 |
if metrics_df.empty:
|
95 |
-
metrics_df = pd.DataFrame(data=
|
96 |
else:
|
97 |
-
metrics_df = metrics_df.assign(**
|
98 |
metrics_df.index = [0]
|
99 |
|
100 |
# Add extra info from the input batch experiment summary
|
@@ -102,7 +111,8 @@ class CSVExperimentSummary(Callback):
|
|
102 |
orig_meta = self.input_experiment_summary[
|
103 |
self.input_experiment_summary['ckpt_path'] == metrics_df['ckpt_path'][0]
|
104 |
].head(1)
|
105 |
-
orig_meta.
|
|
|
106 |
metrics_df = metrics_df.combine_first(orig_meta)
|
107 |
|
108 |
summary_df = pd.concat([summary_df, metrics_df])
|
@@ -169,9 +179,8 @@ def checkpoint_rerun_config(config: DictConfig):
|
|
169 |
ckpt_cfg.data = OmegaConf.masked_copy(ckpt_cfg.data, [
|
170 |
key for key in ckpt_cfg.data.keys() if key not in ['data_file', 'split', 'train_val_test_split']
|
171 |
])
|
172 |
-
ckpt_override_keys = ['task',
|
173 |
-
'
|
174 |
-
'model.predictor']
|
175 |
|
176 |
for key in ckpt_override_keys:
|
177 |
OmegaConf.update(config, key, OmegaConf.select(ckpt_cfg, key), force_add=True)
|
@@ -183,3 +192,4 @@ def checkpoint_rerun_config(config: DictConfig):
|
|
183 |
_save_config(config, "config.yaml", hydra_output)
|
184 |
|
185 |
return config
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
from pathlib import Path
|
3 |
import re
|
4 |
+
from time import time
|
5 |
from typing import Any, Tuple
|
6 |
|
7 |
import pandas as pd
|
8 |
+
from hydra import TaskFunction
|
9 |
from hydra.core.hydra_config import HydraConfig
|
10 |
from hydra.core.utils import _save_config
|
11 |
from hydra.experimental.callbacks import Callback
|
|
|
24 |
self.filename = filename
|
25 |
self.prefix = prefix if isinstance(prefix, str) else tuple(prefix)
|
26 |
self.input_experiment_summary = None
|
27 |
+
self.time = {}
|
28 |
|
29 |
def on_multirun_start(self, config: DictConfig, **kwargs: Any) -> None:
|
30 |
+
if config.hydra.get('overrides') and config.hydra.overrides.get('task'):
|
31 |
+
for i, override in enumerate(config.hydra.overrides.task):
|
32 |
+
if override.startswith("ckpt_path"):
|
33 |
+
ckpt_path = override.split('=', 1)[1]
|
34 |
+
if ckpt_path.endswith(('.csv', '.txt', '.tsv', '.ssv', '.psv')):
|
35 |
+
config.hydra.overrides.task[i] = self.parse_ckpt_path_from_experiment_summary(ckpt_path)
|
36 |
+
break
|
37 |
+
if config.hydra.sweeper.get('params'):
|
38 |
+
if config.hydra.sweeper.params.get('ckpt_path'):
|
39 |
+
ckpt_path = str(config.hydra.sweeper.params.ckpt_path).strip("'\"")
|
40 |
+
if ckpt_path.endswith(('.csv', '.txt', '.tsv', '.ssv', '.psv')):
|
41 |
+
config.hydra.sweeper.params.ckpt_path = self.parse_ckpt_path_from_experiment_summary(ckpt_path)
|
42 |
+
|
43 |
+
def on_job_start(self, config: DictConfig, *, task_function: TaskFunction, **kwargs: Any) -> None:
|
44 |
+
self.time['start'] = time()
|
45 |
|
46 |
def on_job_end(self, config: DictConfig, job_return, **kwargs: Any) -> None:
|
47 |
# Skip callback if job is DDP subprocess
|
|
|
49 |
return
|
50 |
|
51 |
try:
|
52 |
+
self.time['end'] = time()
|
53 |
if config.hydra.mode == RunMode.RUN:
|
54 |
summary_file_path = Path(config.hydra.run.dir) / self.filename
|
55 |
elif config.hydra.mode == RunMode.MULTIRUN:
|
|
|
63 |
summary_df = pd.DataFrame()
|
64 |
|
65 |
# Add job and override info
|
66 |
+
info_dict = {}
|
67 |
+
if job_return.overrides:
|
68 |
+
info_dict = dict(override.split('=', 1) for override in job_return.overrides)
|
69 |
+
info_dict['job_status'] = job_return.status.name
|
70 |
+
info_dict['job_id'] = job_return.hydra_cfg.hydra.job.id
|
71 |
+
info_dict['wall_time'] = str(timedelta(self.time['end'] - self.time['start']))
|
72 |
|
73 |
# Add checkpoint info
|
74 |
+
if info_dict.get('ckpt_path'):
|
75 |
+
info_dict['ckpt_path'] = str(info_dict['ckpt_path']).strip("'\"")
|
76 |
|
77 |
+
ckpt_path = str(job_return.cfg.ckpt_path).strip("'\"")
|
78 |
+
if Path(ckpt_path).is_file():
|
79 |
+
if info_dict.get('ckpt_path') and ckpt_path != info_dict['ckpt_path']:
|
80 |
+
info_dict['previous_ckpt_path'] = info_dict['ckpt_path']
|
81 |
+
info_dict['ckpt_path'] = ckpt_path
|
82 |
+
info_dict['best_epoch'] = int(re.search(r'epoch_(\d+)', info_dict['ckpt_path']).group(1))
|
|
|
|
|
83 |
|
84 |
# Add metrics info
|
85 |
metrics_df = pd.DataFrame()
|
|
|
88 |
csv_metrics_path = output_dir / config.logger.csv.name / "metrics.csv"
|
89 |
if csv_metrics_path.is_file():
|
90 |
log.info(f"Summarizing metrics with prefix `{self.prefix}` from {csv_metrics_path}")
|
|
|
91 |
metrics_df = pd.read_csv(csv_metrics_path)
|
92 |
+
# Find rows where 'test/' columns are not null and reset its epoch to the best model epoch
|
93 |
test_columns = [col for col in metrics_df.columns if col.startswith('test/')]
|
94 |
+
if test_columns:
|
95 |
+
mask = metrics_df[test_columns].notna().any(axis=1)
|
96 |
+
metrics_df.loc[mask, 'epoch'] = info_dict['best_epoch']
|
97 |
# Group and filter by best epoch
|
98 |
metrics_df = metrics_df.groupby('epoch').first()
|
99 |
+
metrics_df = metrics_df[metrics_df.index == info_dict['best_epoch']]
|
100 |
else:
|
101 |
log.info(f"No metrics.csv found in {output_dir}")
|
102 |
|
103 |
if metrics_df.empty:
|
104 |
+
metrics_df = pd.DataFrame(data=info_dict, index=[0])
|
105 |
else:
|
106 |
+
metrics_df = metrics_df.assign(**info_dict)
|
107 |
metrics_df.index = [0]
|
108 |
|
109 |
# Add extra info from the input batch experiment summary
|
|
|
111 |
orig_meta = self.input_experiment_summary[
|
112 |
self.input_experiment_summary['ckpt_path'] == metrics_df['ckpt_path'][0]
|
113 |
].head(1)
|
114 |
+
if not orig_meta.empty:
|
115 |
+
orig_meta.index = [0]
|
116 |
metrics_df = metrics_df.combine_first(orig_meta)
|
117 |
|
118 |
summary_df = pd.concat([summary_df, metrics_df])
|
|
|
179 |
ckpt_cfg.data = OmegaConf.masked_copy(ckpt_cfg.data, [
|
180 |
key for key in ckpt_cfg.data.keys() if key not in ['data_file', 'split', 'train_val_test_split']
|
181 |
])
|
182 |
+
ckpt_override_keys = ['task', 'data.drug_featurizer', 'data.protein_featurizer', 'data.collator',
|
183 |
+
'model.predictor', 'model.out', 'model.loss', 'model.activation', 'model.metrics']
|
|
|
184 |
|
185 |
for key in ckpt_override_keys:
|
186 |
OmegaConf.update(config, key, OmegaConf.select(ckpt_cfg, key), force_add=True)
|
|
|
192 |
_save_config(config, "config.yaml", hydra_output)
|
193 |
|
194 |
return config
|
195 |
+
|
resources/checkpoints/deep_dta-binary-general.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d652a18dda549aa3b16a47cfbe930a1db4aea79c6ecb5294013fe2225dec313a
|
3 |
+
size 16906032
|
resources/checkpoints/deep_dta-binary-general.ckpt.bak
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:321073e4f30845920a2ec6fa8f18a31e8190d9cfe4a1ad264886084de8d8a0ee
|
3 |
+
size 16888959
|
resources/vocabs/drug_vqa/combinedVoc-wholeFour.voc
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
[PAD]
|
2 |
[102Ru]
|
3 |
[80Se]
|
4 |
[N-]
|
|
|
|
|
1 |
[102Ru]
|
2 |
[80Se]
|
3 |
[N-]
|