import hashlib import itertools import json import textwrap import threading from math import pi from uuid import uuid4 import io import os import pathlib from pathlib import Path import sys import numpy as np from Bio import SeqIO from Bio.Align import PairwiseAligner # from email_validator import validate_email import gradio as gr import hydra import pandas as pd import plotly.express as px import requests from rdkit.Chem.rdMolDescriptors import CalcNumRotatableBonds, CalcNumHeavyAtoms, CalcNumAtoms, CalcTPSA from requests.adapters import HTTPAdapter, Retry from rdkit import Chem from rdkit.Chem import RDConfig, Descriptors, Draw, Lipinski, Crippen, PandasTools, AllChem from rdkit.Chem.Scaffolds import MurckoScaffold import seaborn as sns import swifter from tqdm.auto import tqdm from deepscreen.data.dti import validate_seq_str, FASTA_PAT, SMILES_PAT from deepscreen.predict import predict sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score')) import sascorer ROOT = Path.cwd() DF_FOR_REPORT = pd.DataFrame() pd.set_option('display.float_format', '{:.3f}'.format) PandasTools.molRepresentation = 'svg' PandasTools.drawOptions = Draw.rdMolDraw2D.MolDrawOptions() PandasTools.drawOptions.clearBackground = False PandasTools.drawOptions.bondLineWidth = 1.5 PandasTools.drawOptions.explicitMethyl = True PandasTools.drawOptions.singleColourWedgeBonds = True PandasTools.drawOptions.useCDKAtomPalette() PandasTools.molSize = (128, 128) SESSION = requests.Session() ADAPTER = HTTPAdapter(max_retries=Retry(total=5, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504])) SESSION.mount('http://', ADAPTER) SESSION.mount('https://', ADAPTER) # SCHEDULER = BackgroundScheduler() UNIPROT_ENDPOINT = 'https://rest.uniprot.org/uniprotkb/{query}' CUSTOM_DATASET_MAX_LEN = 10000 CSS = """ .help-tip { position: absolute; display: inline-block; top: 16px; right: 0px; text-align: center; border-radius: 40%; /* border: 2px solid darkred; background-color: #8B0000;*/ width: 24px; height: 24px; font-size: 16px; line-height: 26px; cursor: default; transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1); z-index: 100 !important; } .help-tip:hover { cursor: pointer; /*background-color: #ccc;*/ } .help-tip:before { content: '?'; font-weight: 700; color: #8B0000; z-index: 100 !important; } .help-tip p { visibility: hidden; opacity: 0; text-align: left; background-color: #EFDDE3; padding: 20px; width: 300px; position: absolute; border-radius: 4px; right: -4px; color: #494F5A; font-size: 13px; line-height: normal; transform: scale(0.7); transform-origin: 100% 0%; transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1); z-index: 100; } .help-tip:hover p { cursor: default; visibility: visible; opacity: 1; transform: scale(1.0); } .help-tip p:before { position: absolute; content: ''; width: 0; height: 0; border: 6px solid transparent; border-bottom-color: #EFDDE3; right: 10px; top: -12px; } .help-tip p:after { width: 100%; height: 40px; content: ''; position: absolute; top: -5px; left: 0; } .upload_button { background-color: #008000; } .absolute { position: absolute; } #example { padding: 0; background: none; border: none; text-decoration: underline; box-shadow: none; text-align: left !important; display: inline-block !important; } footer { visibility: hidden } """ class HelpTip: def __new__(cls, text): return gr.HTML( # elem_classes="absolute", value=f'

{text}

', ) def sa_score(row): return sascorer.calculateScore(row['Compound']) def mw(row): return Chem.Descriptors.MolWt(row['Compound']) def mr(row): return Crippen.MolMR(row['Compound']) def hbd(row): return Lipinski.NumHDonors(row['Compound']) def hba(row): return Lipinski.NumHAcceptors(row['Compound']) def logp(row): return Crippen.MolLogP(row['Compound']) def atom(row): return CalcNumAtoms(row['Compound']) def heavy_atom(row): return CalcNumHeavyAtoms(row['Compound']) def rotatable_bond(row): return CalcNumRotatableBonds((row['Compound'])) def tpsa(row): return CalcTPSA((row['Compound'])) def lipinski(row): """ Lipinski's rules: Hydrogen bond donors <= 5 Hydrogen bond acceptors <= 10 Molecular weight <= 500 daltons logP <= 5 """ if hbd(row) > 5: return False elif hba(row) > 10: return False elif mw(row) > 500: return False elif logp(row) > 5: return False else: return True def reos(row): """ Rapid Elimination Of Swill filter: Molecular weight between 200 and 500 LogP between -5.0 and +5.0 H-bond donor count between 0 and 5 H-bond acceptor count between 0 and 10 Formal charge between -2 and +2 Rotatable bond count between 0 and 8 Heavy atom count between 15 and 50 """ if not 200 < mw(row) < 500: return False elif not -5.0 < logp(row) < 5.0: return False elif not 0 < hbd(row) < 5: return False elif not 0 < hba(row) < 10: return False elif not 0 < rotatable_bond(row) < 8: return False elif not 15 < heavy_atom(row) < 50: return False else: return True def ghose(row): """ Ghose drug like filter: Molecular weight between 160 and 480 LogP between -0.4 and +5.6 Atom count between 20 and 70 Molar refractivity between 40 and 130 """ if not 160 < mw(row) < 480: return False elif not -0.4 < logp(row) < 5.6: return False elif not 20 < atom(row) < 70: return False elif not 40 < mr(row) < 130: return False else: return True def veber(row): """ The Veber filter is a rule of thumb filter for orally active drugs described in Veber et al., J Med Chem. 2002; 45(12): 2615-23.: Rotatable bonds <= 10 Topological polar surface area <= 140 """ if not rotatable_bond(row) <= 10: return False elif not tpsa(row) <= 140: return False else: return True def rule_of_three(row): """ Rule of Three filter (Congreve et al., Drug Discov. Today. 8 (19): 876–7, (2003).): Molecular weight <= 300 LogP <= 3 H-bond donor <= 3 H-bond acceptor count <= 3 Rotatable bond count <= 3 """ if not mw(row) <= 300: return False elif not logp(row) <= 3: return False elif not hbd(row) <= 3: return False elif not hba(row) <= 3: return False elif not rotatable_bond(row) <= 3: return False else: return True # def smarts_filter(): # alerts = Chem.MolFromSmarts("enter one smart here") # detected_alerts = [] # for smiles in data['X1']: # mol = Chem.MolFromSmiles(smiles) # detected_alerts.append(mol.HasSubstructMatch(alerts)) SCORE_MAP = { 'SAscore': sa_score, 'LogP': logp, 'Molecular weight': mw, 'Number of heavy atoms': heavy_atom, 'Molar refractivity': mr, 'H-bond donor count': hbd, 'H-Bond acceptor count': hba, 'Rotatable bond count': rotatable_bond, 'Topological polar surface area': tpsa, } FILTER_MAP = { # TODO support number_of_violations 'REOS': reos, "Lipinski's Rule of Five": lipinski, 'Ghose': ghose, 'Rule of Three': rule_of_three, 'Veber': veber, # 'PAINS': pains, } TASK_MAP = { 'Compound-protein interaction': 'DTI', 'Compound-protein binding affinity': 'DTA', } PRESET_MAP = { 'DeepDTA': 'deep_dta', 'DeepConvDTI': 'deep_conv_dti', 'GraphDTA': 'graph_dta', 'MGraphDTA': 'm_graph_dta', 'HyperAttentionDTI': 'hyper_attention_dti', 'MolTrans': 'mol_trans', 'TransformerCPI': 'transfomer_cpi', 'TransformerCPI2': 'transformer_cpi_2', 'DrugBAN': 'drug_ban', 'DrugVQA-Seq': 'drug_vqa' } TARGET_FAMILY_MAP = { 'General': 'general', 'Kinase': 'kinase', 'Non-kinase enzyme': 'enzyme', 'Membrane receptor': 'membrane', 'Nuclear receptor': 'nuclear', 'Ion channel': 'ion', 'Other protein targets': 'others', } TARGET_LIBRARY_MAP = { 'ChEMBL33 (Human)': 'ChEMBL33_human_proteins.csv', # 'STITCH': 'stitch.csv', # 'Drug Repurposing Hub': 'drug_repurposing_hub.csv', } DRUG_LIBRARY_MAP = { 'DrugBank (Human)': 'drugbank.csv', } COLUMN_ALIASES = { 'X1': 'Compound SMILES', 'X2': 'Target FASTA', 'ID1': 'Compound ID', 'ID2': 'Target ID', } def validate_columns(df, mandatory_cols): missing_cols = [col for col in mandatory_cols if col not in df.columns] if missing_cols: error_message = (f"The following mandatory columns are missing " f"in the uploaded dataset: {str(['X1', 'X2']).strip('[]')}.") raise ValueError(error_message) else: return def process_target_fasta(sequence): lines = sequence.strip().split("\n") if lines[0].startswith(">"): lines = lines[1:] return ''.join(lines).split(">")[0] # record = SeqIO.parse(io.StringIO(sequence), "fasta")[0] # return str(record.seq) def send_email(receiver, msg): pass def submit_predict(predict_filepath, task, preset, target_family, flag, progress=gr.Progress(track_tqdm=True)): if flag: try: job_id = flag global COLUMN_ALIASES task = TASK_MAP[task] preset = PRESET_MAP[preset] target_family = TARGET_FAMILY_MAP[target_family] # email_hash = hashlib.sha256(email.encode()).hexdigest() COLUMN_ALIASES = COLUMN_ALIASES | { 'Y': 'Actual interaction probability' if task == 'binary' else 'Actual binding affinity', 'Y^': 'Predicted interaction probability' if task == 'binary' else 'Predicted binding affinity' } # target_family_list = [target_family] # for family in target_family_list: # try: prediction_df = pd.DataFrame() with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"): cfg = hydra.compose( config_name="webserver_inference", overrides=[f"task={task}", f"preset={preset}", f"ckpt_path=resources/checkpoints/{preset}-{task}-{target_family}.ckpt", f"data.data_file='{str(predict_filepath)}'"]) predictions, _ = predict(cfg) predictions = [pd.DataFrame(prediction) for prediction in predictions] prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)]) predictions_file = f'temp/{job_id}_predictions.csv' prediction_df.to_csv(predictions_file, index=False) return [predictions_file, False] except Exception as e: gr.Warning(f"Prediction job failed due to error: {str(e)}") return [None, False] else: return [None, False] # # except Exception as e: # raise gr.Error(str(e)) # email_lock = Path(f"outputs/{email_hash}.lock") # with open(email_lock, "w") as file: # record = { # "email": email, # "job_id": job_id # } # json.dump(record, file) # def run_predict(): # TODO per-user submit usage # # email_lock = Path(f"outputs/{email_hash}.lock") # # with open(email_lock, "w") as file: # # record = { # # "email": email, # # "job_id": job_id # # } # # json.dump(record, file) # # job_lock = DATA_PATH / f"outputs/{job_id}.lock" # with open(job_lock, "w") as file: # pass # # try: # prediction_df = pd.DataFrame() # for family in target_family_list: # with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"): # cfg = hydra.compose( # config_name="webserver_inference", # overrides=[f"task={task}", # f"preset={preset}", # f"ckpt_path=resources/checkpoints/{preset}-{task}-{family}.ckpt", # f"data.data_file='{str(predict_dataset)}'"]) # # predictions, _ = predict(cfg) # predictions = [pd.DataFrame(prediction) for prediction in predictions] # prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)]) # prediction_df.to_csv(f'outputs/{job_id}.csv') # # email_lock.unlink() # job_lock.unlink() # # msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) completed successfully. You may retrieve the ' # f'results and generate an analytical report at {URL} using the job id within 48 hours.') # gr.Info(msg) # except Exception as e: # msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) failed due to an error: "{str(e)}." You may ' # f'reach out to the author about the error through email (DeepSEQreen@xjtlu.edu.cn).') # raise gr.Error(str(e)) # finally: # send_email(email, msg) # # # Run "predict" asynchronously # threading.Thread(target=run_predict).start() # # msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) started running. You may retrieve the results ' # f'and generate an analytical report at {URL} using the job id once the job is done. Only one job ' # f'per user is allowed at the same time.') # send_email(email, msg) # # Return the job id first # return [ # gr.Blocks(visible=False), # gr.Markdown(f"Your prediction job is running... " # f"You may stay on this page or come back later to retrieve the results " # f"Once you receive our email notification."), # ] def update_df(file, progress=gr.Progress(track_tqdm=True)): global DF_FOR_REPORT if file is not None: df = pd.read_csv(file) if df['X1'].nunique() > 1: df['Scaffold SMILES'] = df['X1'].swifter.progress_bar( desc=f"Calculating scaffold...").apply(MurckoScaffold.MurckoScaffoldSmilesFromSmiles) # Add a new column with RDKit molecule objects if 'Compound' not in df.columns or df['Compound'].dtype != 'object': PandasTools.AddMoleculeColumnToFrame(df, smilesCol='X1', molCol='Compound', includeFingerprints=True) PandasTools.AddMoleculeColumnToFrame(df, smilesCol='Scaffold SMILES', molCol='Scaffold', includeFingerprints=True) DF_FOR_REPORT = df.copy() # pie_chart = None # value = None # if 'Y^' in DF_FOR_REPORT.columns: # value = 'Y^' # elif 'Y' in DF_FOR_REPORT.columns: # value = 'Y' # if value: # if DF_FOR_REPORT['X1'].nunique() > 1 >= DF_FOR_REPORT['X2'].nunique(): # pie_chart = create_pie_chart(DF_FOR_REPORT, category='Scaffold SMILES', value=value, top_k=100) # elif DF_FOR_REPORT['X2'].nunique() > 1 >= DF_FOR_REPORT['X1'].nunique(): # pie_chart = create_pie_chart(DF_FOR_REPORT, category='Target family', value=value, top_k=100) return create_html_report(DF_FOR_REPORT), df # pie_chart else: return gr.HTML(), gr.Dataframe() def create_html_report(df, file=None, progress=gr.Progress(track_tqdm=True)): df_html = df.copy() cols_left = ['ID1', 'ID2', 'Y', 'Y^', 'Compound', 'Scaffold', 'Scaffold SMILES', ] cols_right = ['X1', 'X2'] cols_left = [col for col in cols_left if col in df_html.columns] cols_right = [col for col in cols_right if col in df_html.columns] df_html = df_html[cols_left + (df_html.columns.drop(cols_left + cols_right).tolist()) + cols_right] df_html['X2'] = df_html['X2'].swifter.apply(wrap_text) df_html = df_html.sort_values( [col for col in ['Y', 'Y^', 'ID1', 'ID2', 'X1', 'X2'] if col in df.columns], ascending=False ).rename(columns=COLUMN_ALIASES) # PandasTools.RenderImagesInAllDataFrames(images=True) PandasTools.ChangeMoleculeRendering(df_html, renderer='image') # Return the DataFrame as HTML PandasTools.RenderImagesInAllDataFrames(images=True) if not file: styled_df = df_html.iloc[:51].style # styled_df = df.style.format("{:.2f}") colors = sns.color_palette('husl', len(df_html.columns)) for i, col in enumerate(df_html.columns): if pd.api.types.is_numeric_dtype(df_html[col]): styled_df = styled_df.background_gradient(subset=col, cmap=sns.light_palette(colors[i], as_cmap=True)) html = styled_df.to_html() return f'Report preview
{html}
' else: import panel as pn from bokeh.resources import INLINE from bokeh.models import NumberFormatter, BooleanFormatter bokeh_formatters = { 'float': {'type': 'progress', 'legend': True}, 'bool': BooleanFormatter(), } # html = df.to_html(file) # return html pn.widgets.Tabulator(df_html, formatters=bokeh_formatters).save(file, resources=INLINE) # def create_pie_chart(df, category, value, top_k): # df.rename(COLUMN_ALIASES, inplace=True) # # Select the top_k records based on the value_col # top_k_df = df.nlargest(top_k, value) # # # Count the frequency of each unique value in the category_col column # category_counts = top_k_df[category].value_counts() # # # Convert the counts to a DataFrame # data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values}) # # # Calculate the angle for each category # data['angle'] = data['value']/data['value'].sum() * 2*pi # # # Assign colors # data['color'] = Spectral11[0:len(category_counts)] # # # Create the plot # p = figure(height=350, title="Pie Chart", toolbar_location=None, # tools="hover", tooltips="@{}: @value".format(category), x_range=(-0.5, 1.0)) # # p.wedge(x=0, y=1, radius=0.4, # start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'), # line_color="white", fill_color='color', legend_field=category, source=data) # # p.axis.axis_label = None # p.axis.visible = False # p.grid.grid_line_color = None # # return p def create_pie_chart(df, category, value, top_k): df = df.copy() df.rename(COLUMN_ALIASES, inplace=True) value = COLUMN_ALIASES.get(value, value) # Select the top_k records based on the value_col top_k_df = df.nlargest(top_k, value) # Count the frequency of each unique value in the category_col column category_counts = top_k_df[category].value_counts() # Convert the counts to a DataFrame data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values}) # Create the plot fig = px.pie(data, values='value', names=category, title=f'Top-{top_k} {category} in {value}') fig.update_traces(textposition='inside', textinfo='percent+label') return fig def submit_report(score_list, filter_list, progress=gr.Progress(track_tqdm=True)): df = DF_FOR_REPORT.copy() try: for filter_name in filter_list: df[filter_name] = df.swifter.progress_bar(desc=f"Calculating {filter_name}").apply( FILTER_MAP[filter_name], axis=1) for score_name in score_list: df[score_name] = df.swifter.progress_bar(desc=f"Calculating {score_name}").apply( SCORE_MAP[score_name], axis=1) # pie_chart = None # value = None # if 'Y^' in df.columns: # value = 'Y^' # elif 'Y' in df.columns: # value = 'Y' # # if value: # if df['X1'].nunique() > 1 >= df['X2'].nunique(): # pie_chart = create_pie_chart(df, category='Scaffold SMILES', value=value, top_k=100) # elif df['X2'].nunique() > 1 >= df['X1'].nunique(): # pie_chart = create_pie_chart(df, category='Target family', value=value, top_k=100) return create_html_report(df), df # pie_chart except Exception as e: raise gr.Error(str(e)) # def check_job_status(job_id): # job_lock = DATA_PATH / f"{job_id}.lock" # job_file = DATA_PATH / f"{job_id}.csv" # if job_lock.is_file(): # return {gr.Markdown(f"Your job ({job_id}) is still running... " # f"You may stay on this page or come back later to retrieve the results " # f"Once you receive our email notification."), # None, # None # } # elif job_file.is_file(): # return {gr.Markdown(f"Your job ({job_id}) is done! Redirecting you to generate reports..."), # gr.Tabs(selected=3), # gr.File(str(job_lock))} def wrap_text(text, line_length=60): wrapper = textwrap.TextWrapper(width=line_length) if text.startswith('>'): sections = text.split('>') wrapped_sections = [] for section in sections: if not section: continue lines = section.split('\n') seq_header = lines[0] wrapped_seq = wrapper.fill(''.join(lines[1:])) wrapped_sections.append(f">{seq_header}\n{wrapped_seq}") return '\n'.join(wrapped_sections) else: return wrapper.fill(text) def unwrap_text(text): return text.strip.replece('\n', '') def smiles_from_sdf(sdf_path): with Chem.SDMolSupplier(sdf_path) as suppl: return Chem.MolToSmiles(suppl[0]) def drug_library_from_sdf(sdf_path): return PandasTools.LoadSDF( sdf_path, smilesName='X1', molColName='Compound', includeFingerprints=True ) def process_target_library_upload(library_upload): if library_upload.endswith('.csv'): identify_df = pd.read_csv(library_upload) elif library_upload.endswith('.fasta'): identify_df = target_library_from_fasta(library_upload) else: raise gr.Error('Currently only CSV and FASTA files are supported as target libraries.') validate_columns(identify_df, ['X2']) return library_upload def process_drug_library_upload(library_upload): if library_upload.endswith('.csv'): screen_df = pd.read_csv(library_upload) elif library_upload.endswith('.sdf'): screen_df = drug_library_from_sdf(library_upload) else: raise gr.Error('Currently only CSV and SDF files are supported as compound libraries.') validate_columns(screen_df, ['X1']) return screen_df def target_library_from_fasta(fasta_path): records = list(SeqIO.parse(fasta_path, "fasta")) id2 = [record.id for record in records] seq = [str(record.seq) for record in records] df = pd.DataFrame({'ID2': id2, 'X2': seq}) return df theme = gr.themes.Base(spacing_size="sm", text_size='md').set( background_fill_primary='#dfe6f0', background_fill_secondary='#dfe6f0', checkbox_label_background_fill='#dfe6f0', checkbox_label_background_fill_hover='#dfe6f0', checkbox_background_color='white', checkbox_border_color='#4372c4', border_color_primary='#4372c4', border_color_accent='#4372c4', button_primary_background_fill='#4372c4', button_primary_text_color='white', button_secondary_border_color='#4372c4', body_text_color='#4372c4', block_title_text_color='#4372c4', block_label_text_color='#4372c4', block_info_text_color='#505358', block_border_color=None, input_border_color='#4372c4', panel_border_color='#4372c4', input_background_fill='white', code_background_fill='white', ) with gr.Blocks(theme=theme, title='DeepSEQreen', css=CSS) as demo: run_state = gr.State(value=False) screen_flag = gr.State(value=False) identify_flag = gr.State(value=False) infer_flag = gr.State(value=False) with gr.Tabs() as tabs: with gr.TabItem(label='Drug hit screening', id=0): gr.Markdown(''' #
DeepSEQreen Drug Hit Screening
To predict interactions/binding affinities of a single target against a library of compounds.
''') with gr.Blocks() as screen_block: with gr.Column() as screen_page: with gr.Row(): with gr.Column(): HelpTip( "Enter (paste) a amino acid sequence below manually or upload a FASTA file." "If multiple entities are in the FASTA, only the first will be used." "Alternatively, enter a Uniprot ID or gene symbol with organism and click Query for the sequence." ) with gr.Row(): target_input_type = gr.Dropdown( label='Step 1. Select Target Input Type and Input', choices=['Sequence', 'UniProt ID', 'Gene symbol'], info='Enter (paste) a FASTA string below manually or upload a FASTA file.', value='Sequence', scale=4, interactive=True ) target_id = gr.Textbox(show_label=False, visible=False, interactive=True, scale=4, info='Query a sequence on UniProt with a UniProt ID.') target_gene = gr.Textbox( show_label=False, visible=False, interactive=True, scale=4, info='Query a sequence on UniProt with a gene symbol.') target_organism = gr.Textbox( info='Organism scientific name (default: Homo sapiens).', placeholder='Homo sapiens', show_label=False, visible=False, interactive=True, scale=4, ) with gr.Row(): with gr.Column(): target_upload_btn = gr.UploadButton(label='Upload a FASTA file', type='binary', visible=True, variant='primary', size='lg') target_query_btn = gr.Button(value='Query the sequence', variant='primary', visible=False) target_fasta = gr.Code(label='Input or Display FASTA', interactive=True, lines=5) # with gr.Row(): # with gr.Column(): example_fasta = gr.Button(value='Example: Human MAPK14', elem_id='example') # with gr.Column(): # gr.File(label='Example FASTA file', # value='data/examples/MAPK14.fasta', interactive=False) with gr.Row(): with gr.Column(): HelpTip( "Click Auto-detect to identify the protein family using sequence alignment. " "This optional step allows applying a family-specific model instead of a all-family model (general)." "Manually select general if the alignment results are unsatisfactory." ) drug_screen_target_family = gr.Dropdown( choices=list(TARGET_FAMILY_MAP.keys()), value='General', label='Step 2. Select Input Protein Family (Optional)', interactive=True) # with gr.Column(scale=1, min_width=24): with gr.Row(): with gr.Column(): target_family_detect_btn = gr.Button(value='Auto-detect', variant='primary') with gr.Row(): with gr.Column(): HelpTip( "Select a preset compound library (e.g., DrugBank)." "Alternatively, upload a CSV file with a column named X1 containing compound SMILES, or use an SDF file." ) drug_library = gr.Dropdown(label='Step 3. Select or Upload a Compound Library', choices=list(DRUG_LIBRARY_MAP.keys())) with gr.Row(): gr.File(label='Example SDF Compound Library', value='data/examples/compound_library.sdf', interactive=False) gr.File(label='Example CSV Compound Library', value='data/examples/compound_library.csv', interactive=False) drug_library_upload_btn = gr.UploadButton( label='Upload a custom library', variant='primary') drug_library_upload = gr.File(label='Custom compound library file', visible=False) with gr.Row(): with gr.Column(): HelpTip( "Interaction prediction provides you binding probability score between the target of interest and each compound in the library," "while affinity prediction directly estimates their binding strength measured using IC50." ) drug_screen_task = gr.Dropdown(list(TASK_MAP.keys()), label='Step 4. Select a Prediction Task', value='Compound-protein interaction') with gr.Row(): with gr.Column(): HelpTip("Select your preferred model, or click Recommend for the best-performing model based on the selected task, family, and whether the target was trained." "Please refer to documentation for detailed benchamrk results." ) drug_screen_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Step 5. Select a Preset Model') screen_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary') with gr.Row(): with gr.Column(): drug_screen_email = gr.Textbox( label='Step 6. Email (Optional)', info="If an email is provided, a notification email will be sent to you when your job is completed." ) with gr.Row(visible=True): with gr.Column(): # drug_screen_clr_btn = gr.ClearButton(size='lg') drug_screen_btn = gr.Button(value='SCREEN', variant='primary', size='lg') # TODO Modify the pd df directly with df['X2'] = target screen_data_for_predict = gr.File(visible=False, file_count="single", type='filepath') screen_waiting = gr.Markdown("""
Your job is running... It might take a few minutes. When it's done, you will be redirected to the report page. Meanwhile, please leave the page on.
""", visible=False) with gr.TabItem(label='Target protein identification', id=1): gr.Markdown(''' #
DeepSEQreen Target Protein Identification
To predict interactions/binding affinities of a single compound against a library of protein targets.
''') with gr.Blocks() as identify_block: with gr.Column() as identify_page: with gr.Row(): with gr.Column(): HelpTip( "Enter (paste) a compound SMILES below manually or upload a SDF file." "If multiple entities are in the SDF, only the first will be used." "SMILES can be obtained by searching for the compound of interest in databases such as NCBI, PubChem and and ChEMBL." ) compound_type = gr.Dropdown( label='Step 1. Select Compound Input Type and Input', choices=['SMILES', 'SDF'], info='Enter (paste) an SMILES string or upload an SDF file.', value='SMILES', interactive=True) compound_upload_btn = gr.UploadButton(label='Upload', variant='primary', type='binary') compound_smiles = gr.Code(label='Input or Display Compound SMILES', interactive=True, lines=5) example_drug = gr.Button(value='Example: Aspirin', elem_id='example') with gr.Row(): with gr.Column(): HelpTip( "By default, models trained on all protein families (general) will be applied." "If the proteins in the target library of interest all belong to the same protein family, manually selecting the family is supported." ) target_identify_target_family = gr.Dropdown(choices=list(TARGET_FAMILY_MAP.keys()), value='General', label='Step 2. Select Target Protein Family (Optional)') with gr.Row(): with gr.Column(): HelpTip( "Select a preset target library (e.g., ChEMBL33_human_proteins)." "Alternatively, upload a CSV file with a column named X2 containing tareget protein sequences, or use an FASTA file." ) target_library = gr.Dropdown(label='Step 3. Select or Upload a Target Library', choices=list(TARGET_LIBRARY_MAP.keys())) with gr.Row(): gr.File(label='Example FASTA Target Library', value='data/examples/target_library.fasta', interactive=False) gr.File(label='Example CSV Target Library', value='data/examples/target_library.csv', interactive=False) target_library_upload_btn = gr.UploadButton( label='Upload a custom library', variant='primary') target_library_upload = gr.File(label='Custom target library file', visible=False) with gr.Row(): with gr.Column(): HelpTip( "Interaction prediction provides you binding probability score between the target of interest and each compound in the library," "while affinity prediction directly estimates their binding strength measured using IC50." ) target_identify_task = gr.Dropdown(list(TASK_MAP.keys()), label='Step 4. Select a Prediction Task', value='Compound-protein interaction') with gr.Row(): with gr.Column(): HelpTip("Select your preferred model, or click Recommend for the best-performing model based on the selected task, family, and whether the compound was trained." "Please refer to documentation for detailed benchamrk results." ) target_identify_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Step 5. Select a Preset Model') identify_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary') with gr.Row(): with gr.Column(): target_identify_email = gr.Textbox( label='Step 6. Email (Optional)', info="If an email is provided, a notification email will be sent to you when your job is completed." ) with gr.Row(visible=True): # target_identify_clr_btn = gr.ClearButton(size='lg') target_identify_btn = gr.Button(value='IDENTIFY', variant='primary', size='lg') identify_data_for_predict = gr.File(visible=False, file_count="single", type='filepath') identify_waiting = gr.Markdown(f"Your job is running... It might take a few minutes." f"When it's done, you will be redirected to the report page. " f"Meanwhile, please leave the page on.", visible=False) with gr.TabItem(label='Interaction pair inference', id=2): gr.Markdown(''' #
DeepSEQreen Interaction Pair Inference
To predict interactions/binding affinities between any compound-protein pairs.
''') with gr.Blocks() as infer_block: with gr.Column() as infer_page: infer_type = gr.Dropdown(choices=['Upload a CSV interaction pair dataset', 'Upload a compound library and a target library'], label='Step 1. Select Pair Input Type and Input', value='Upload a CSV interaction pair dataset') with gr.Column() as pair_upload: with gr.Row(): gr.File(label="Example custom dataset", value="data/examples/interaction_pair_inference.csv", interactive=False) with gr.Row(): infer_data_for_predict = gr.File( label='Upload a Custom Dataset', file_count="single", type='filepath', visible=True) with gr.Column() as pair_generate: with gr.Row(): gr.File(label='Example SDF Compound Library', value='data/examples/compound_library.sdf', interactive=False) gr.File(label='Example FASTA Target Library', value='data/examples/target_library.fasta', interactive=False) with gr.Row(): gr.File(label='Example CSV Compound Library', value='data/examples/compound_library.csv', interactive=False) gr.File(label='Example CSV Target Library', value='data/examples/target_library.csv', interactive=False) with gr.Row(): infer_drug = gr.File(label='SDF/CSV File Containing Multiple Compounds', file_count="single", type='filepath') infer_target = gr.File(label='FASTA/CSV File Containing Multiple Targets', file_count="single", type='filepath') with gr.Row(): with gr.Column(): HelpTip( "By default, models trained on all protein families (general) will be applied." "If the proteins in the target library of interest all belong to the same protein family, manually selecting the family is supported." ) pair_infer_target_family = gr.Dropdown(choices=list(TARGET_FAMILY_MAP.keys()), value='General', label='Step 2. Select Target Protein Family (Optional)') with gr.Row(): with gr.Column(): HelpTip( "Interaction prediction provides you binding probability score between the target of interest and each compound in the library," "while affinity prediction directly estimates their binding strength measured using IC50." ) pair_infer_task = gr.Dropdown(list(TASK_MAP.keys()), label='Step 3. Select a Prediction Task', value='Compound-protein interaction') with gr.Row(): with gr.Column(): HelpTip("Select your preferred model, or click Recommend for the best-performing model based on the selected task, family, and random splitting validation." "Please refer to documentation for detailed benchamrk results." ) pair_infer_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Step 4. Select a Preset Model') infer_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary') with gr.Row(): pair_infer_email = gr.Textbox( label='Step 5. Email (Optional)', info="If an email is provided, a notification email will be sent to you when your job is completed." ) with gr.Row(visible=True): # pair_infer_clr_btn = gr.ClearButton(size='lg') pair_infer_btn = gr.Button(value='INFER', variant='primary', size='lg') infer_waiting = gr.Markdown(f"Your job is running... It might take a few minutes." f"When it's done, you will be redirected to the report page. " f"Meanwhile, please leave the page on.", visible=False) with gr.TabItem(label='Chemical property report', id=3): with gr.Blocks() as report: gr.Markdown(''' #
DeepSEQreen Chemical Property Report
To compute chemical properties for the predictions of drug hit screening, target protein identification, and interaction pair inference. You may also upload your own dataset. The page shows only a preview report displaying at most 30 records (with top predicted CPI/CPA if reporting results from a prediction job). For a full report, please generate and download a raw data CSV or interactive table HTML file below.
''') with gr.Row(): file_for_report = gr.File(interactive=True, type='filepath') df_raw = gr.Dataframe(type="pandas", interactive=False, visible=False) scores = gr.CheckboxGroup(list(SCORE_MAP.keys()), label='Scores') filters = gr.CheckboxGroup(list(FILTER_MAP.keys()), label='Filters') with gr.Row(): # clear_btn = gr.ClearButton(size='lg') analyze_btn = gr.Button('REPORT', variant='primary', size='lg') with gr.Row(): with gr.Column(scale=3): html_report = gr.HTML() # label='Results', visible=True) ranking_pie_chart = gr.Plot(visible=False) with gr.Row(): with gr.Column(): csv_generate = gr.Button(value='Generate raw data (CSV)', interactive=True) csv_download_file = gr.File(label='Download raw data (CSV)', visible=False) with gr.Column(): html_generate = gr.Button(value='Generate report (HTML)', interactive=True) html_download_file = gr.File(label='Download report (HTML)', visible=False) def target_input_type_select(input_type): match input_type: case 'UniProt ID': return [gr.Dropdown(info=''), gr.UploadButton(visible=False), gr.Textbox(visible=True, value=''), gr.Textbox(visible=False, value=''), gr.Textbox(visible=False, value=''), gr.Button(visible=True), gr.Code(value='')] case 'Gene symbol': return [gr.Dropdown(info=''), gr.UploadButton(visible=False), gr.Textbox(visible=False, value=''), gr.Textbox(visible=True, value=''), gr.Textbox(visible=True, value=''), gr.Button(visible=True), gr.Code(value='')] case 'Sequence': return [gr.Dropdown(info='Enter (paste) a FASTA string below manually or upload a FASTA file.'), gr.UploadButton(visible=True), gr.Textbox(visible=False, value=''), gr.Textbox(visible=False, value=''), gr.Textbox(visible=False, value=''), gr.Button(visible=False), gr.Code(value='')] target_input_type.select( fn=target_input_type_select, inputs=target_input_type, outputs=[ target_input_type, target_upload_btn, target_id, target_gene, target_organism, target_query_btn, target_fasta ], show_progress=False ) def uniprot_query(input_type, uid, gene, organism='Human'): fasta_seq = '' match input_type: case 'UniProt ID': query = f"{uid.strip()}.fasta" case 'Gene symbol': organism = organism if organism else 'Human' query = f'search?query=organism_name:{organism.strip()}+AND+gene:{gene.strip()}&format=fasta' try: fasta = SESSION.get(UNIPROT_ENDPOINT.format(query=query)) fasta.raise_for_status() fasta_seq = fasta.text except Exception as e: raise gr.Warning(f"Failed to query FASTA from UniProt database due to {str(e)}") finally: return fasta_seq target_upload_btn.upload(fn=lambda x: x.decode(), inputs=target_upload_btn, outputs=target_fasta) target_query_btn.click(uniprot_query, inputs=[target_input_type, target_id, target_gene, target_organism], outputs=target_fasta) def target_family_detect(fasta, progress=gr.Progress(track_tqdm=True)): aligner = PairwiseAligner(scoring='blastp', mode='local') alignment_df = pd.read_csv('data/target_libraries/ChEMBL33_all_spe_single_prot_info.csv') def align_score(query): return aligner.align(process_target_fasta(fasta), query).score alignment_df['score'] = alignment_df['X2'].swifter.progress_bar( desc="Detecting protein family of the target...").apply(align_score) row = alignment_df.loc[alignment_df['score'].idxmax()] return gr.Dropdown(value=row['protein_family'].capitalize(), info=f"Reason: Best BLASTP score ({row['score']}) " f"with {row['ID2']} from family {row['protein_family']}") target_family_detect_btn.click(fn=target_family_detect, inputs=target_fasta, outputs=drug_screen_target_family) target_fasta.focus(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False) target_fasta.blur(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False) drug_library_upload_btn.upload(fn=lambda x: [ x.name, gr.Dropdown(value=Path(x.name).name, choices=list(DRUG_LIBRARY_MAP.keys()) + [Path(x.name).name]) ], inputs=drug_library_upload_btn, outputs=[drug_library_upload, drug_library]) def example_fill(input_type): return {target_id: 'Q16539', target_gene: 'MAPK14', target_organism: 'Human', target_fasta: """ >sp|Q16539|MK14_HUMAN Mitogen-activated protein kinase 14 OS=Homo sapiens OX=9606 GN=MAPK14 PE=1 SV=3 MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQ SIIHAKRTYRELRLLKHMKHENVIGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQ KLTDDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCELKILDFGLARHTDDEMT GYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVG TPGAELLKKISSESARNYIQSLTQMPKMNFANVFIGANPLAVDLLEKMLVLDSDKRITAA QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES """} example_fasta.click(fn=example_fill, inputs=target_input_type, outputs=[target_id, target_gene, target_organism, target_fasta], show_progress=False) def screen_recommend_model(fasta, family, task): task = TASK_MAP[task] if task == 'DTI': train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv') score = 'AUROC' elif task == 'DTA': train = pd.read_csv('data/benchmarks/all_families_reduced_dta_train.csv') score = 'CI' if fasta not in train['X2']: scenario = "Unseen target" else: scenario = "Seen target" benchmark_df = pd.read_csv('data/benchmarks/compound_screen.csv') if family == 'General': filtered_df = benchmark_df[(benchmark_df[f'Task'] == task) & (benchmark_df['Target.family'] == 'All families reduced') & (benchmark_df['Scenario'] == 'Random split') & (benchmark_df['all'] == True)] else: filtered_df = benchmark_df[(benchmark_df['Task'] == task) & (benchmark_df['Target.family'] == family) & (benchmark_df['Scenario'] == scenario) & (benchmark_df['all'] == False)] row = filtered_df.loc[filtered_df[score].idxmax()] return gr.Dropdown(value=row['preset'], info=f"Reason: {scenario} in the training dataset; we recommend the model " f"with the best {score} ({float(row[score]):.3f}) " f"in the {scenario.lower()} scenario on {family.lower()} family.") screen_preset_recommend_btn.click(fn=screen_recommend_model, inputs=[target_fasta, drug_screen_target_family, drug_screen_task], outputs=drug_screen_preset) def compound_input_type_select(input_type): match input_type: case 'SMILES': return gr.Dropdown(info='Input an SMILES string or upload an SMI file') case 'SDF': return gr.Dropdown(info='Convert the first molecule in an SDF file to SMILES') compound_type.select(fn=compound_input_type_select, inputs=compound_type, outputs=compound_type, show_progress=False) def compound_upload_process(input_type, input_upload): match input_type: case 'SMILES': return input_upload.decode() case 'SDF': suppl = Chem.ForwardSDMolSupplier(io.BytesIO(input_upload)) return Chem.MolToSmiles(next(suppl)) compound_upload_btn.upload(fn=compound_upload_process, inputs=[compound_type, compound_upload_btn], outputs=compound_smiles) example_drug.click(fn=lambda: 'CC(=O)Oc1ccccc1C(=O)O', outputs=compound_smiles, show_progress=False) target_library_upload_btn.upload(fn=lambda x: [ x.name, gr.Dropdown(value=Path(x.name).name, choices=list(TARGET_LIBRARY_MAP.keys()) + [Path(x.name).name]) ], inputs=target_library_upload_btn, outputs=[target_library_upload, target_library]) def identify_recommend_model(smiles, task): task = TASK_MAP[task] if task == 'DTI': train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv') score = 'AUROC' elif task == 'DTA': train = pd.read_csv('data/benchmarks/all_families_reduced_dta_train.csv') score = 'CI' if smiles not in train['X1']: scenario = "Unseen drug" else: scenario = "Seen drug" benchmark_df = pd.read_csv('data/benchmarks/target_identification.csv') filtered_df = benchmark_df[(benchmark_df['Task'] == task) & (benchmark_df['Scenario'] == scenario)] row = filtered_df.loc[filtered_df[score].idxmax()] return gr.Dropdown(value=row['preset'], info=f"Reason: {scenario} in the training dataset; choosing the model " f"with the best {score} ({float(row[score]):3f}) " f"in the {scenario.lower()} scenario.") identify_preset_recommend_btn.click(fn=identify_recommend_model, inputs=[compound_smiles, target_identify_task], outputs=target_identify_preset) def infer_type_change(upload_type): match upload_type: case "Upload a compound library and a target library": return { pair_upload: gr.Column(visible=False), pair_generate: gr.Column(visible=True), infer_data_for_predict: None, infer_drug: None, infer_target: None } match upload_type: case "Upload a CSV interaction pair dataset": return { pair_upload: gr.Column(visible=True), pair_generate: gr.Column(visible=False), infer_data_for_predict: None, infer_drug: None, infer_target: None } infer_type.select(fn=infer_type_change, inputs=infer_type, outputs=[pair_upload, pair_generate, infer_data_for_predict, infer_drug, infer_target]) def drug_screen_validate(fasta, library, library_upload, state, progress=gr.Progress(track_tqdm=True)): if not state: try: fasta = process_target_fasta(fasta) err = validate_seq_str(fasta, FASTA_PAT) if err: raise ValueError(f'Found error(s) in your target fasta input: {err}') if library in DRUG_LIBRARY_MAP.keys(): screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library])) else: screen_df = process_drug_library_upload(library_upload) print(screen_df.shape) if len(screen_df) >= CUSTOM_DATASET_MAX_LEN: raise gr.Error(f'The uploaded compound library has more records ' f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).') screen_df['X2'] = fasta job_id = uuid4() temp_file = Path(f'temp/{job_id}_input.csv').resolve() screen_df.to_csv(temp_file, index=False) if temp_file.is_file(): return {screen_data_for_predict: str(temp_file), screen_flag: job_id, run_state: job_id} else: raise SystemError('Failed to create temporary files. Please try again later.') except Exception as e: gr.Warning(f'Failed to submit the job due to error: {str(e)}') return {screen_flag: False, run_state: False} else: gr.Warning('You have another prediction job ' '(drug hit screening, target protein identification, or interation pair inference) ' 'running in the session right now. ' 'Please submit another job when your current job has finished.') return {screen_flag: False, run_state: state} def target_identify_validate(smiles, library, library_upload, state, progress=gr.Progress(track_tqdm=True)): if not state: try: smiles = smiles.strip() err = validate_seq_str(smiles, SMILES_PAT) if err: raise ValueError(f'Found error(s) in your target fasta input: {err}') if library in TARGET_LIBRARY_MAP.keys(): identify_df = pd.read_csv(Path('data/target_libraries', TARGET_LIBRARY_MAP[library])) else: identify_df = process_target_library_upload(library_upload) if len(identify_df) >= CUSTOM_DATASET_MAX_LEN: raise gr.Error(f'The uploaded target library has more records ' f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).') identify_df['X1'] = smiles job_id = uuid4() temp_file = Path(f'temp/{job_id}_input.csv').resolve() identify_df.to_csv(temp_file, index=False) if temp_file.is_file(): return {identify_data_for_predict: str(temp_file), identify_flag: job_id, run_state: job_id} else: raise SystemError('Failed to create temporary files. Please try again later.') except Exception as e: gr.Warning(f'Failed to submit the job due to error: {str(e)}') return {identify_flag: False, run_state: False} else: gr.Warning('You have another prediction job ' '(drug hit screening, target protein identification, or interation pair inference) ' 'running in the session right now. ' 'Please submit another job when your current job has finished.') return {identify_flag: False, run_state: state} # return {identify_flag: False} def pair_infer_validate(drug_target_pair_upload, drug_upload, target_upload, state, progress=gr.Progress(track_tqdm=True)): if not state: try: job_id = uuid4() if drug_target_pair_upload: infer_df = pd.read_csv(drug_target_pair_upload) validate_columns(infer_df, ['X1', 'X2']) infer_df['X1_ERR'] = infer_df['X1'].swifter.progress_bar(desc="Validating SMILES...").apply( validate_seq_str, regex=SMILES_PAT) if not infer_df['X1_ERR'].isna().all(): raise ValueError( f"Encountered invalid SMILES:\n{infer_df[~infer_df['X1_ERR'].isna()][['X1', 'X1_ERR']]}") infer_df['X2_ERR'] = infer_df['X2'].swifter.progress_bar(desc="Validating FASTA...").apply( validate_seq_str, regex=FASTA_PAT) if not infer_df['X2_ERR'].isna().all(): raise ValueError( f"Encountered invalid FASTA:\n{infer_df[~infer_df['X2_ERR'].isna()][['X2', 'X2_ERR']]}") return {infer_data_for_predict: str(drug_target_pair_upload), infer_flag: job_id, run_state: job_id} elif drug_upload and target_upload: drug_df = process_drug_library_upload(drug_upload) target_df = process_target_library_upload(target_upload) drug_df.drop_duplicates(subset=['X1'], inplace=True) target_df.drop_duplicates(subset=['X2'], inplace=True) infer_df = pd.DataFrame(list(itertools.product(drug_df['X1'], target_df['X2'])), columns=['X1', 'X2']) infer_df = infer_df.merge(drug_df, on='X1').merge(target_df, on='X2') temp_file = Path(f'temp/{job_id}_input.csv').resolve() infer_df.to_csv(temp_file, index=False) if temp_file.is_file(): return {infer_data_for_predict: str(temp_file), infer_flag: job_id, run_state: job_id} else: raise gr.Error('Should upload a compound-protein pair dataset,or ' 'upload both a compound library and a target library.') if len(infer_df) >= CUSTOM_DATASET_MAX_LEN: raise gr.Error(f'The uploaded/generated compound-protein pair dataset has more records ' f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).') except Exception as e: gr.Warning(f'Failed to submit the job due to error: {str(e)}') return {infer_flag: False, run_state: False} else: gr.Warning('You have another prediction job ' '(drug hit screening, target protein identification, or interation pair inference) ' 'running in the session right now. ' 'Please submit another job when your current job has finished.') return {infer_flag: False, run_state: state} drug_screen_btn.click( fn=drug_screen_validate, inputs=[target_fasta, drug_library, drug_library_upload, run_state], # , drug_screen_email], outputs=[screen_data_for_predict, screen_flag, run_state] ).then( fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)], outputs=[screen_page, screen_waiting] ).then( fn=submit_predict, inputs=[screen_data_for_predict, drug_screen_task, drug_screen_preset, drug_screen_target_family, screen_flag], # , drug_screen_email], outputs=[file_for_report, run_state] ).then( fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False), gr.Tabs(selected=3)], outputs=[screen_page, screen_waiting, tabs] ) target_identify_btn.click( fn=target_identify_validate, inputs=[compound_smiles, target_library, target_library_upload, run_state], # , drug_screen_email], outputs=[identify_data_for_predict, identify_flag, run_state] ).then( fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True), gr.Tabs(selected=3)], outputs=[identify_page, identify_waiting, tabs] ).then( fn=submit_predict, inputs=[identify_data_for_predict, target_identify_task, target_identify_preset, target_identify_target_family, identify_flag], # , target_identify_email], outputs=[file_for_report, run_state] ).then( fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False), gr.Tabs(selected=3)], outputs=[identify_page, identify_waiting, tabs] ) pair_infer_btn.click( fn=pair_infer_validate, inputs=[infer_data_for_predict, infer_drug, infer_target, run_state], # , drug_screen_email], outputs=[infer_data_for_predict, infer_flag, run_state] ).then( fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)], outputs=[infer_page, infer_waiting] ).then( fn=submit_predict, inputs=[infer_data_for_predict, pair_infer_task, pair_infer_preset, pair_infer_target_family, infer_flag], # , pair_infer_email], outputs=[file_for_report, run_state] ).then( fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False)], outputs=[infer_page, infer_waiting] ) # TODO background job from these 3 pipelines to update file_for_report file_for_report.change(fn=update_df, inputs=file_for_report, outputs=[ html_report, df_raw, # ranking_pie_chart ]) analyze_btn.click(fn=submit_report, inputs=[scores, filters], outputs=[ html_report, df_raw, # ranking_pie_chart ]) def create_csv_raw_file(df, file_report): from datetime import datetime now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") filename = f"reports/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.csv" df.drop(['Compound', 'Scaffold']).to_csv(filename, index=False) return gr.File(filename, visible=True) def create_html_report_file(df, file_report): from datetime import datetime now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") filename = f"reports/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.html" create_html_report(df, filename) return gr.File(filename, visible=True) csv_generate.click(fn=create_csv_raw_file, inputs=[df_raw, file_for_report], outputs=csv_download_file) html_generate.click(fn=create_html_report_file, inputs=[df_raw, file_for_report], outputs=html_download_file) # screen_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report], # every=5) # identify_waiting.change(fn=check_job_status, inputs=run_state, outputs=[identify_waiting, tabs, file_for_report], # every=5) # pair_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report], # every=5) # demo.load(None, None, None, js="() => {document.body.classList.remove('dark')}") if __name__ == "__main__": screen_block.queue(max_size=2) identify_block.queue(max_size=2) infer_block.queue(max_size=2) report.queue(max_size=20) # SCHEDULER.add_job(func=file_cleanup(), trigger="interval", seconds=60) # SCHEDULER.start() demo.launch( show_api=False, ) #%%