from importlib import resources import numpy as np import pandas as pd from subword_nmt.apply_bpe import BPE import codecs vocab_path = resources.files('deepscreen').parent.joinpath('resources/vocabs/ESPF/protein_codes_uniprot.txt') bpe_codes_protein = codecs.open(vocab_path) protein_bpe = BPE(bpe_codes_protein, merges=-1, separator='') sub_csv_path = resources.files('deepscreen').parent.joinpath('resources/vocabs/ESPF/subword_units_map_uniprot.csv') sub_csv = pd.read_csv(sub_csv_path) idx2word_protein = sub_csv['index'].values words2idx_protein = dict(zip(idx2word_protein, range(0, len(idx2word_protein)))) vocab_path = resources.files('deepscreen').parent.joinpath('resources/vocabs/ESPF/drug_codes_chembl.txt') bpe_codes_drug = codecs.open(vocab_path) drug_bpe = BPE(bpe_codes_drug, merges=-1, separator='') sub_csv_path = resources.files('deepscreen').parent.joinpath('resources/vocabs/ESPF/subword_units_map_chembl.csv') sub_csv = pd.read_csv(sub_csv_path) idx2word_drug = sub_csv['index'].values words2idx_drug = dict(zip(idx2word_drug, range(0, len(idx2word_drug)))) def protein_to_embedding(x, max_sequence_length): max_p = max_sequence_length t1 = protein_bpe.process_line(x).split() # split try: i1 = np.asarray([words2idx_protein[i] for i in t1]) # index except: i1 = np.array([0]) # print(x) l = len(i1) if l < max_p: i = np.pad(i1, (0, max_p - l), 'constant', constant_values=0) input_mask = ([1] * l) + ([0] * (max_p - l)) else: i = i1[:max_p] input_mask = [1] * max_p return i, np.asarray(input_mask) def drug_to_embedding(x, max_sequence_length): max_d = max_sequence_length t1 = drug_bpe.process_line(x).split() # split try: i1 = np.asarray([words2idx_drug[i] for i in t1]) # index except: i1 = np.array([0]) # print(x) l = len(i1) if l < max_d: i = np.pad(i1, (0, max_d - l), 'constant', constant_values=0) input_mask = ([1] * l) + ([0] * (max_d - l)) else: i = i1[:max_d] input_mask = [1] * max_d return i, np.asarray(input_mask)