import glob import smtplib from datetime import datetime, timedelta import itertools import textwrap from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.utils import formatdate, make_msgid from functools import cache from math import pi from time import sleep, time from uuid import uuid4 import io import os from pathlib import Path import sys import pytz from Bio import SeqIO from Bio.Align import PairwiseAligner from email_validator import validate_email, EmailNotValidError import gradio as gr import hydra import pandas as pd import requests from requests.adapters import HTTPAdapter, Retry from markdown import markdown from rdkit import Chem from rdkit.Chem import Draw, RDConfig, PandasTools, Descriptors, rdMolDescriptors, rdmolops, Lipinski, Crippen from rdkit.Chem.Scaffolds import MurckoScaffold import seaborn as sns from bokeh.models import Legend, NumberFormatter, BooleanFormatter, HTMLTemplateFormatter, LegendItem from bokeh.palettes import Category20c_20 from bokeh.plotting import figure from bokeh.transform import cumsum from bokeh.resources import INLINE import panel as pn from apscheduler.schedulers.background import BackgroundScheduler from tinydb import TinyDB, Query import swifter from tqdm.auto import tqdm from deepscreen.data.dti import validate_seq_str, rdkit_canonicalize, FASTA_PAT, SMILES_PAT from deepscreen.predict import predict sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score')) import sascorer DATASET_MAX_LEN = 10_000 SERVER_DATA_DIR = os.getenv('DATA') # '/data' DB_EXPIRY = timedelta(hours=48).total_seconds() CSS = """ .help-tip { position: absolute; display: inline-block; top: 16px; right: 0px; text-align: center; border-radius: 40%; /* border: 2px solid darkred; background-color: #8B0000;*/ width: 24px; height: 24px; font-size: 16px; line-height: 26px; cursor: default; transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1); z-index: 100 !important; } .help-tip:hover { cursor: pointer; /*background-color: #ccc;*/ } .help-tip:before { content: '?'; font-weight: 700; color: #8B0000; z-index: 100 !important; } .help-tip p { visibility: hidden; opacity: 0; text-align: left; background-color: #EFDDE3; padding: 20px; width: 300px; position: absolute; border-radius: 4px; right: -4px; color: #494F5A; font-size: 13px; line-height: normal; transform: scale(0.7); transform-origin: 100% 0%; transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1); z-index: 100; } .help-tip:hover p { cursor: default; visibility: visible; opacity: 1; transform: scale(1.0); } .help-tip p:before { position: absolute; content: ''; width: 0; height: 0; border: 6px solid transparent; border-bottom-color: #EFDDE3; right: 10px; top: -12px; } .help-tip p:after { width: 100%; height: 40px; content: ''; position: absolute; top: -5px; left: 0; z-index: 101; } .upload_button { background-color: #008000; } .absolute { position: absolute; } .example { padding: 0; background: none; border: none; text-decoration: underline; box-shadow: none; text-align: left !important; display: inline-block !important; } footer { visibility: hidden } """ class HelpTip: def __new__(cls, text): return gr.HTML( # elem_classes="absolute", value=f'

{text}

', ) TASK_MAP = { 'Compound-Protein Interaction': 'DTI', 'Compound-Protein Binding Affinity': 'DTA', } TASK_METRIC_MAP = { 'DTI': 'AUROC', 'DTA': 'CI', } PRESET_MAP = { 'DeepDTA': 'deep_dta', 'DeepConvDTI': 'deep_conv_dti', 'GraphDTA': 'graph_dta', 'MGraphDTA': 'm_graph_dta', 'HyperAttentionDTI': 'hyper_attention_dti', 'MolTrans': 'mol_trans', 'TransformerCPI': 'transformer_cpi', 'TransformerCPI2': 'transformer_cpi_2', 'DrugBAN': 'drug_ban', 'DrugVQA-Seq': 'drug_vqa' } TARGET_FAMILY_MAP = { 'General': 'general', 'Kinase': 'kinase', 'Non-Kinase Enzyme': 'non_kinase_enzyme', 'Membrane Receptor': 'membrane_receptor', 'Nuclear Receptor': 'nuclear_receptor', 'Ion Channel': 'ion_channel', 'Others': 'others', } TARGET_LIBRARY_MAP = { 'DrugBank (Human)': 'drugbank_targets.csv', 'ChEMBL33 (Human)': 'ChEMBL33_human_proteins.csv', } DRUG_LIBRARY_MAP = { 'DrugBank (Human)': 'drugbank_compounds.csv', 'Drug Repurposing Hub': 'drug_repurposing_hub.csv' } COLUMN_ALIASES = { 'X1': 'Compound SMILES', 'X2': 'Target FASTA', 'ID1': 'Compound ID', 'ID2': 'Target ID', 'Y': 'Actual CPI/CPA', 'Y^': 'Predicted CPI/CPA', } pd.set_option('display.float_format', '{:.3f}'.format) PandasTools.molRepresentation = 'svg' PandasTools.drawOptions = Draw.rdMolDraw2D.MolDrawOptions() PandasTools.drawOptions.clearBackground = False PandasTools.drawOptions.bondLineWidth = 1 PandasTools.drawOptions.explicitMethyl = True PandasTools.drawOptions.singleColourWedgeBonds = True PandasTools.drawOptions.useCDKAtomPalette() PandasTools.molSize = (100, 64) session = requests.Session() ADAPTER = HTTPAdapter(max_retries=Retry(total=5, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504])) session.mount('http://', ADAPTER) session.mount('https://', ADAPTER) db = TinyDB(f'{SERVER_DATA_DIR}/db.json') # Set all RUNNING jobs to FAILED at TinyDB initialization Job = Query() jobs = db.all() for job in jobs: if job['status'] == 'RUNNING': db.update({'status': 'FAILED'}, Job.id == job['id']) scheduler = BackgroundScheduler() def remove_job_record(job_id): # Delete the job from the database db.remove(Job.id == job_id) # Delete the corresponding files files = glob.glob(f"/data/{job_id}*") for file_path in files: if os.path.exists(file_path): os.remove(file_path) def check_expiry(): Job = Query() jobs = db.all() for job in jobs: # Check if the job has expired if job['status'] != 'RUNNING': expiry_time = job['expiry_time'] if job['expiry_time'] is not None else job['start_time'] + DB_EXPIRY if expiry_time < time(): # Delete the job from the database db.remove(Job.id == job['id']) # Delete the corresponding file files = glob.glob(f"/data/{job['id']}*") for file_path in files: if os.path.exists(file_path): os.remove(file_path) elif job['status'] == 'RUNNING' and time() - job['start_time'] > 4 * 60 * 60: # 4 hours # Mark the job as failed db.update({'status': 'FAILED', 'error': 'Job has timed out by exceeding the maximum running time of 4 hours.'}, Job.id == job['id']) if job.get('email'): send_email(job) scheduler.add_job(check_expiry, 'interval', hours=1) scheduler.start() def lipinski(mol): """ Lipinski's rules: Hydrogen bond donors <= 5 Hydrogen bond acceptors <= 10 Molecular weight <= 500 daltons logP <= 5 """ return ( Lipinski.NumHDonors(mol) <= 5 and Lipinski.NumHAcceptors(mol) <= 10 and Descriptors.MolWt(mol) <= 500 and Crippen.MolLogP(mol) <= 5 ) def reos(mol): """ Rapid Elimination Of Swill filter: Molecular weight between 200 and 500 LogP between -5.0 and +5.0 H-bond donor count between 0 and 5 H-bond acceptor count between 0 and 10 Formal charge between -2 and +2 Rotatable bond count between 0 and 8 Heavy atom count between 15 and 50 """ return ( 200 <= Descriptors.MolWt(mol) <= 500 and -5.0 <= Crippen.MolLogP(mol) <= 5.0 and 0 <= Lipinski.NumHDonors(mol) <= 5 and 0 <= Lipinski.NumHAcceptors(mol) <= 10 and -2 <= rdmolops.GetFormalCharge(mol) <= 2 and 0 <= rdMolDescriptors.CalcNumRotatableBonds(mol) <= 8 and 15 <= rdMolDescriptors.CalcNumHeavyAtoms(mol) <= 50 ) def ghose(mol): """ Ghose drug like filter: Molecular weight between 160 and 480 LogP between -0.4 and +5.6 Atom count between 20 and 70 Molar refractivity between 40 and 130 """ return ( 160 <= Descriptors.MolWt(mol) <= 480 and -0.4 <= Crippen.MolLogP(mol) <= 5.6 and 20 <= rdMolDescriptors.CalcNumAtoms(mol) <= 70 and 40 <= Crippen.MolMR(mol) <= 130 ) def veber(mol): """ The Veber filter is a rule of thumb filter for orally active drugs described in Veber et al., J Med Chem. 2002; 45(12): 2615-23.: Rotatable bonds <= 10 Topological polar surface area <= 140 """ return ( rdMolDescriptors.CalcNumRotatableBonds(mol) <= 10 and rdMolDescriptors.CalcTPSA(mol) <= 140 ) def rule_of_three(mol): """ Rule of Three filter (Congreve et al., Drug Discov. Today. 8 (19): 876–7, (2003).): Molecular weight <= 300 LogP <= 3 H-bond donor <= 3 H-bond acceptor count <= 3 Rotatable bond count <= 3 """ return ( Descriptors.MolWt(mol) <= 300 and Crippen.MolLogP(mol) <= 3 and Lipinski.NumHDonors(mol) <= 3 and Lipinski.NumHAcceptors(mol) <= 3 and rdMolDescriptors.CalcNumRotatableBonds(mol) <= 3 ) @cache def load_smarts_patterns(smarts_path): # Load the CSV file containing SMARTS patterns smarts_df = pd.read_csv(Path(smarts_path)) # Convert all SMARTS patterns to molecules smarts_mols = [Chem.MolFromSmarts(smarts) for smarts in smarts_df['smarts']] return smarts_mols def smarts_filter(mol, smarts_mols): for smarts_mol in smarts_mols: if smarts_mol is not None and mol.HasSubstructMatch(smarts_mol): return False return True def pains(mol): smarts_mols = load_smarts_patterns("data/filters/pains.csv") return smarts_filter(mol, smarts_mols) def mlsmr(mol): smarts_mols = load_smarts_patterns("data/filters/mlsmr.csv") return smarts_filter(mol, smarts_mols) def dundee(mol): smarts_mols = load_smarts_patterns("data/filters/dundee.csv") return smarts_filter(mol, smarts_mols) def glaxo(mol): smarts_mols = load_smarts_patterns("data/filters/glaxo.csv") return smarts_filter(mol, smarts_mols) def bms(mol): smarts_mols = load_smarts_patterns("data/filters/bms.csv") return smarts_filter(mol, smarts_mols) SCORE_MAP = { 'SAscore': sascorer.calculateScore, 'LogP': Crippen.MolLogP, 'Molecular Weight': Descriptors.MolWt, 'Number of Atoms': rdMolDescriptors.CalcNumAtoms, 'Number of Heavy Atoms': rdMolDescriptors.CalcNumHeavyAtoms, 'Molar Refractivity': Crippen.MolMR, 'H-Bond Donor Count': Lipinski.NumHDonors, 'H-Bond Acceptor Count': Lipinski.NumHAcceptors, 'Rotatable Bond Count': rdMolDescriptors.CalcNumRotatableBonds, 'Topological Polar Surface Area': rdMolDescriptors.CalcTPSA, } FILTER_MAP = { # TODO support number_of_violations 'REOS': reos, "Lipinski's Rule of Five": lipinski, 'Ghose': ghose, 'Rule of Three': rule_of_three, 'Veber': veber, 'PAINS': pains, 'MLSMR': mlsmr, 'Dundee': dundee, 'Glaxo': glaxo, 'BMS': bms, } def validate_columns(df, mandatory_cols): missing_cols = [col for col in mandatory_cols if col not in df.columns] if missing_cols: error_message = (f"The following mandatory columns are missing " f"in the uploaded dataset: {str(mandatory_cols).strip('[]')}.") raise ValueError(error_message) else: return def process_target_fasta(sequence): try: if sequence: lines = sequence.strip().split("\n") if lines[0].startswith(">"): lines = lines[1:] return ''.join(lines).split(">")[0] # record = list(SeqIO.parse(io.StringIO(sequence), "fasta"))[0] # return str(record.seq) else: raise ValueError('Empty FASTA sequence.') except Exception as e: raise gr.Error(f'Failed to process FASTA due to error: {str(e)}') def send_email(job_info): if job_info.get('email'): try: email_info = job_info.copy() email_serv = os.getenv('EMAIL_SERV') email_port = os.getenv('EMAIL_PORT') email_addr = os.getenv('EMAIL_ADDR') email_pass = os.getenv('EMAIL_PASS') email_form = os.getenv('EMAIL_FORM') email_subj = os.getenv('EMAIL_SUBJ') for key, value in email_info.items(): if key.endswith("time") and value: email_info[key] = ts_to_str(value, get_timezone_by_ip(email_info['ip'])) server = smtplib.SMTP(email_serv, int(email_port)) # server.starttls() server.login(email_addr, email_pass) msg = MIMEMultipart("alternative") msg["From"] = email_addr msg["To"] = email_info['email'] msg["Subject"] = email_subj.format(**email_info) msg["Date"] = formatdate(localtime=True) msg["Message-ID"] = make_msgid() msg.attach(MIMEText(markdown(email_form.format(**email_info)), 'html')) msg.attach(MIMEText(email_form.format(**email_info), 'plain')) server.sendmail(email_addr, email_info['email'], msg.as_string()) server.quit() gr.Info('Email notification sent.') except Exception as e: gr.Warning('Failed to send email notification due to error: ' + str(e)) def check_user_running_job(email, request): message = ("You already have a running prediction job (ID: {id}) under this {reason}. " "Please wait for it to complete before submitting another job.") try: # with open('jobs.json', 'r') as f: # /data/ # # Load the JSON data from the file # jobs = json.load(f) # # for job_id, job_info in jobs.items(): # # check if a job is running for the email # if email: # if job_info["email"] == email and job_info["status"] == "running": # return message.format(id=job_id, reason="email") # # check if a job is running for the session # elif request.cookies: # for key, value in job_info["cookies"].items() and job_info["status"] == "running": # if key in request.cookies and request.cookies[key] == value: # return message.format(id=job_id, reason="session") # # check if a job is running for the IP # else: # if job_info["IP"] == request.client.host and job_info["status"] == "running": # return message.format(id=job_id, reason="IP") # check if a job is running for the email Job = Query() if email: job = db.search((Job.email == email) & (Job.status == "RUNNING")) if job: return message.format(id=job[0]['id'], reason="email") # check if a job is running for the session elif request.cookies: for key, value in request.cookies.items(): job = db.search((Job.cookies[key] == value) & (Job.status == "RUNNING")) if job: return message.format(id=job[0]['id'], reason="session") # check if a job is running for the IP else: job = db.search((Job.IP == request.client.host) & (Job.status == "RUNNING")) if job: return message.format(id=job[0]['id'], reason="IP") return False except Exception as e: raise gr.Error(f'Failed to validate user running jobs due to error: {str(e)}') def get_timezone_by_ip(ip): try: data = session.get(f'https://worldtimeapi.org/api/ip/{ip}').json() return data['timezone'] except Exception: return 'UTC' def ts_to_str(timestamp, timezone): # Create a timezone-aware datetime object from the UNIX timestamp dt = datetime.fromtimestamp(timestamp, pytz.utc) # Convert the timezone-aware datetime object to the target timezone target_timezone = pytz.timezone(timezone) localized_dt = dt.astimezone(target_timezone) # Format the datetime object to the specified string format return localized_dt.strftime('%Y-%m-%d %H:%M:%S (%Z%z)') def lookup_job(job_id): gr.Info('Start querying the job database...') stop = False while not stop: try: Job = Query() jobs = db.search((Job.id == job_id)) if jobs: job = jobs[0] job_status = job['status'] job_type = job['type'] error = job['error'] start_time = ts_to_str(job['start_time'], get_timezone_by_ip(job['ip'])) if job.get('end_time'): end_time = ts_to_str(job['end_time'], get_timezone_by_ip(job['ip'])) if job.get('expiry_time'): expiry_time = ts_to_str(job['expiry_time'], get_timezone_by_ip(job['ip'])) if job_status == "RUNNING": sleep(5) yield { pred_lookup_status: f''' Your **{job_type}** job (ID: {job_id}) started at **{start_time}** and is **RUNNING...** It might take a few minutes up to a few hours depending on the prediction dataset, the model, and the queue status. You may keep the page open and wait for the completion, or close the page and revisit later to look up the job status using the job id. You will also receive an email notification once the job is done. ''', pred_lookup_btn: gr.Button(visible=False), pred_lookup_stop_btn: gr.Button(visible=True) } if job_status == "COMPLETED": stop = True msg = f"Your {job_type} job (ID: {job_id}) has been **COMPLETED**" msg += f" at {end_time}" if job.get('end_time') else "" msg += f" and the results will expire by {expiry_time}." if job.get('expiry_time') else "." msg += f' Redirecting to the report page...' gr.Info(msg) yield { pred_lookup_status: msg, pred_lookup_btn: gr.Button(visible=True), pred_lookup_stop_btn: gr.Button(visible=False), tabs: gr.Tabs(selected='Chemical Property Report'), file_for_report: job['output_file'] } if job_status == "FAILED": stop = True msg = f'Your {job_type} job (ID: {job_id}) has **FAILED**' msg += f' at {end_time}' if job.get('end_time') else '' msg += f' due to error: {error}.' if job.get('expiry_time') else '.' gr.Info(msg) yield { pred_lookup_status: msg, pred_lookup_btn: gr.Button(visible=True), pred_lookup_stop_btn: gr.Button(visible=False), tabs: gr.Tabs(selected='Prediction Status Lookup'), } else: stop = True msg = f'Job ID {job_id} not found.' gr.Info(msg) yield { pred_lookup_status: msg, pred_lookup_btn: gr.Button(visible=True), pred_lookup_stop_btn: gr.Button(visible=False), tabs: gr.Tabs(selected='Prediction Status Lookup'), } except Exception as e: raise gr.Error(f'Failed to retrieve job status due to error: {str(e)}') def submit_predict(predict_filepath, task, preset, target_family, state): job_id = state['id'] status = "RUNNING" error = None task_file_abbr = {'Compound-Protein Interaction': 'CPI', 'Compound-Protein Binding Affinity': 'CPA'} predictions_file = None try: target_family = TARGET_FAMILY_MAP[target_family] predictions_file = f'{SERVER_DATA_DIR}/{job_id}_{task_file_abbr[task]}_{preset}_{target_family}_predictions.csv' task = TASK_MAP[task] preset = PRESET_MAP[preset] prediction_df = pd.DataFrame() cfg = hydra.compose( config_name="webserver_inference", overrides=[f"task={task}", f"preset={preset}", f"ckpt_path=resources/checkpoints/{preset}-{task}-{target_family}.ckpt", f"data.data_file='{str(predict_filepath)}'"]) # with concurrent.futures.ThreadPoolExecutor() as executor: # future = executor.submit(predict, cfg) # try: # predictions, _ = future.result(timeout=4*60*60) # except concurrent.futures.TimeoutError: # raise gr.Error("Prediction timed out.") predictions, _ = predict(cfg) predictions = [pd.DataFrame(prediction) for prediction in predictions] prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)]) prediction_df.set_index('N', inplace=True) orig_df = pd.read_csv( predict_filepath, usecols=lambda x: x not in ['X1', 'ID1', 'Compound', 'Scaffold', 'Scaffold SMILES', 'X2', 'ID2', 'Y', 'Y^'] ) prediction_df = pd.merge(prediction_df, orig_df, left_index=True, right_index=True, how='left') prediction_df.to_csv(predictions_file) status = "COMPLETED" return {run_state: False} except Exception as e: gr.Warning(f"Prediction job failed due to error: {str(e)}") status = "FAILED" predictions_file = None error = str(e) return {run_state: False} finally: Job = Query() job_query = (Job.id == job_id) end_time = time() expiry_time = end_time + DB_EXPIRY db.update({'end_time': end_time, 'expiry_time': expiry_time, 'status': status, 'error': error, 'input_file': predict_filepath, 'output_file': predictions_file}, job_query) if job_info := db.search(job_query)[0]: if job_info.get('email'): send_email(job_info) def update_df(file, progress=gr.Progress(track_tqdm=True)): if file and Path(file).is_file(): task = None if "_CPI_" in str(file): task = 'Compound-Protein Interaction' elif "_CPA_" in str(file): task = 'Compound-Protein Binding Affinity' df = pd.read_csv(file) if 'N' in df.columns: df.set_index('N', inplace=True) if not any(col in ['X1', 'X2'] for col in df.columns): gr.Warning("At least one of columns `X1` and `X2` must be in the uploaded dataset.") return {analyze_btn: gr.Button(interactive=False)} if 'X1' in df.columns: df['Scaffold SMILES'] = df['X1'].swifter.progress_bar( desc=f"Calculating scaffold...").apply(MurckoScaffold.MurckoScaffoldSmilesFromSmiles) df['Scaffold'] = df['Scaffold SMILES'].swifter.progress_bar( desc='Generating scaffold graphs...').apply( lambda smiles: PandasTools._MolPlusFingerprint(Chem.MolFromSmiles(smiles))) # Add a new column with RDKit molecule objects if 'Compound' not in df.columns or df['Compound'].dtype != 'object': df['Compound'] = df['X1'].swifter.progress_bar( desc='Generating molecular graphs...').apply( lambda smiles: PandasTools._MolPlusFingerprint(Chem.MolFromSmiles(smiles))) # DF_FOR_REPORT = df.copy() # pie_chart = None # value = None # if 'Y^' in DF_FOR_REPORT.columns: # value = 'Y^' # elif 'Y' in DF_FOR_REPORT.columns: # value = 'Y' # if value: # if DF_FOR_REPORT['X1'].nunique() > 1 >= DF_FOR_REPORT['X2'].nunique(): # pie_chart = create_pie_chart(DF_FOR_REPORT, category='Scaffold SMILES', value=value, top_k=100) # elif DF_FOR_REPORT['X2'].nunique() > 1 >= DF_FOR_REPORT['X1'].nunique(): # pie_chart = create_pie_chart(DF_FOR_REPORT, category='Target family', value=value, top_k=100) return {html_report: create_html_report(df, file=None, task=task), raw_df: df, report_df: df.copy(), analyze_btn: gr.Button(interactive=True), report_task: task} # pie_chart else: return {analyze_btn: gr.Button(interactive=False)} def create_html_report(df, file=None, task=None, progress=gr.Progress(track_tqdm=True)): df_html = df.copy(deep=True) column_aliases = COLUMN_ALIASES.copy() cols_left = list(pd.Index( ['ID1', 'Compound', 'Scaffold', 'Scaffold SMILES', 'ID2', 'Y', 'Y^']).intersection(df_html.columns)) cols_right = list(pd.Index(['X1', 'X2']).intersection(df_html.columns)) df_html = df_html[cols_left + (df_html.columns.drop(cols_left + cols_right).tolist()) + cols_right] if isinstance(task, str): column_aliases.update({ 'Y': 'Actual Interaction Probability' if task == 'Compound-Protein Interaction' else 'Actual Binding Affinity', 'Y^': 'Predicted Interaction Probability' if task == 'Compound-Protein Interaction' else 'Predicted Binding Affinity' }) ascending = True if column_aliases['Y^'] == 'Predicted Binding Affinity' else False df_html = df_html.sort_values( [col for col in ['Y', 'Y^'] if col in df_html.columns], ascending=ascending ) if not file: df_html = df_html.iloc[:31] # Remove repeated info for one-against-N tasks to save visual and physical space job = 'Chemical Property' unique_entity = 'Unique Entity' unique_df = None category = None columns_unique = None if 'X1' in df_html.columns and 'X2' in df_html.columns: n_compound = df_html['X1'].nunique() n_protein = df_html['X2'].nunique() if n_compound == 1 and n_protein >= 2: unique_entity = 'Compound of Interest' if any(col in df_html.columns for col in ['Y^', 'Y']): job = 'Target Protein Identification' category = 'Target Family' columns_unique = df_html.columns.isin(['X1', 'ID1', 'Scaffold', 'Compound', 'Scaffold SMILES'] + list(FILTER_MAP.keys()) + list(SCORE_MAP.keys())) elif n_compound >= 2 and n_protein == 1: unique_entity = 'Target of Interest' if any(col in df_html.columns for col in ['Y^', 'Y']): job = 'Drug Hit Screening' category = 'Scaffold SMILES' columns_unique = df_html.columns.isin(['X2', 'ID2']) elif 'Y^' in df_html.columns: job = 'Interaction Pair Inference' if 'Compound' in df_html.columns: df_html['Compound'] = df_html['Compound'].swifter.progress_bar( desc='Generating compound graph...').apply( lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x) if 'Scaffold' in df_html.columns: df_html['Scaffold'] = df_html['Scaffold'].swifter.progress_bar( desc='Generating scaffold graph...').apply( lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x) df_html.rename(columns=column_aliases, inplace=True) df_html.index.name = 'Index' if 'Target FASTA' in df_html.columns: df_html['Target FASTA'] = df_html['Target FASTA'].swifter.progress_bar( desc='Processing FASTA...').apply( lambda x: wrap_text(x) if not pd.isna(x) else x) num_cols = df_html.select_dtypes('number').columns num_col_colors = sns.color_palette('husl', len(num_cols)) bool_cols = df_html.select_dtypes(bool).columns bool_col_colors = {True: 'lightgreen', False: 'lightpink'} if columns_unique is not None: unique_df = df_html.loc[:, columns_unique].iloc[[0]].copy() df_html = df_html.loc[:, ~columns_unique] if not file: if 'Compound ID' in df_html.columns: df_html.drop(['Compound SMILES'], axis=1, inplace=True) if 'Target ID' in df_html.columns: df_html.drop(['Target FASTA'], axis=1, inplace=True) if 'Target FASTA' in df_html.columns: df_html['Target FASTA'] = df_html['Target FASTA'].swifter.progress_bar( desc='Processing FASTA...').apply( lambda x: wrap_text(x) if not pd.isna(x) else x) if 'Scaffold SMILES' in df_html.columns: df_html.drop(['Scaffold SMILES'], axis=1, inplace=True) styled_df = df_html.style.format(precision=3) for i, col in enumerate(num_cols): if col in df_html.columns: if col not in ['Predicted Binding Affinity', 'Actual Binding Affinity']: styled_df = styled_df.background_gradient( subset=[col], cmap=sns.light_palette(num_col_colors[i], as_cmap=True)) else: styled_df = styled_df.background_gradient( subset=[col], cmap=sns.light_palette(num_col_colors[i], as_cmap=True).reversed()) if any(df_html.columns.isin(bool_cols)): styled_df.applymap(lambda val: f'background-color: {bool_col_colors[val]}', subset=bool_cols) table_html = styled_df.to_html(na_rep='') unique_html = '' if unique_df is not None: if 'Target FASTA' in unique_df.columns: unique_df['Target FASTA'] = unique_df['Target FASTA'].str.replace('\n', '
') if any(unique_df.columns.isin(bool_cols)): unique_df = unique_df.style.applymap( lambda val: f"background-color: {bool_col_colors[val]}", subset=bool_cols) unique_html = (f'
' f'{unique_df.to_html(escape=False, index=False, na_rep="")}
') return (f'
{job} Report Preview (Top 30 Records)
' f'
{unique_html}
' f'
{table_html}
') else: bool_formatters = {col: BooleanFormatter() for col in bool_cols} float_formatters = {col: NumberFormatter(format='0.000') for col in df_html.select_dtypes('floating').columns} other_formatters = { 'Predicted Interaction Probability': {'type': 'progress', 'max': 1.0, 'legend': True}, 'Actual Interaction Probability': {'type': 'progress', 'max': 1.0, 'legend': True}, 'Compound': HTMLTemplateFormatter(template='
<%= value %>
'), 'Scaffold': HTMLTemplateFormatter(template='
<%= value %>
'), 'Target FASTA': {'type': 'textarea', 'width': 60}, 'Target ID': HTMLTemplateFormatter( template='<%= value %>'), 'Compound ID': HTMLTemplateFormatter( template='<%= value %>') } formatters = {**bool_formatters, **float_formatters, **other_formatters} # html = df.to_html(file) # return html report_table = pn.widgets.Tabulator( df_html, formatters=formatters, frozen_columns=['Index', 'Target ID', 'Compound ID', 'Compound', 'Scaffold'], disabled=True, sizing_mode='stretch_both', pagination='local', page_size=30) for i, col in enumerate(num_cols): if col not in ['Predicted Binding Affinity', 'Actual Binding Affinity']: if col not in ['Predicted Interaction Probability', 'Actual Interaction Probability']: report_table.style.background_gradient( subset=df_html.columns == col, cmap=sns.light_palette(num_col_colors[i], as_cmap=True)) else: continue else: report_table.style.background_gradient( subset=df_html.columns == col, cmap=sns.light_palette(num_col_colors[i], as_cmap=True).reversed()) pie_charts = {} for y in df_html.columns.intersection(['Predicted Interaction Probability', 'Actual Interaction Probability', 'Predicted Binding Affinity', 'Actual Binding Affinity']): pie_charts[y] = [] for k in [10, 30, 100]: if k < len(df_html): pie_charts[y].append(create_pie_chart(df_html, category=category, value=y, top_k=k)) pie_charts[y].append(create_pie_chart(df_html, category=category, value=y, top_k=len(df_html))) # Remove keys with empty values pie_charts = {k: v for k, v in pie_charts.items() if any(v)} pn_css = """ .tabulator { font-family: Courier New !important; font-weight: normal !important; font-size: 12px !important; } .tabulator-cell { overflow: visible !important; } .tabulator-cell:hover { z-index: 1000 !important; } .tabulator-cell.tabulator-frozen:hover { z-index: 1000 !important; } .image-zoom-viewer { display: inline-block; overflow: visible; z-index: 1000; } .image-zoom-viewer::after { content: ""; top: 0; left: 0; width: 100%; height: 100%; pointer-events: none; } .image-zoom-viewer:hover::after { pointer-events: all; } /* When hovering over the container, scale its child (the SVG) */ .tabulator-cell:hover .image-zoom-viewer svg { padding: 3px; position: absolute; background-color: rgba(250, 250, 250, 0.854); box-shadow: 0 0 10px rgba(0, 0, 0, 0.618); border-radius: 3px; transform: scale(3); /* Scale up the SVG */ transition: transform 0.3s ease; pointer-events: none; /* Prevents the SVG from blocking mouse interactions */ z-index: 1000; } .image-zoom-viewer svg { display: block; /* SVG is a block-level element for proper scaling */ z-index: 1000; } .image-zoom-viewer:hover { z-index: 1000; } """ pn.extension(raw_css=[pn_css]) template = pn.template.VanillaTemplate( title=f'DeepSEQreen {job} Report', sidebar=[], favicon='deepseqreen.svg', logo='deepseqreen.svg', header_background='#F3F5F7', header_color='#4372c4', busy_indicator=None, ) stats_pane = pn.Row() if unique_df is not None: unique_table = pn.widgets.Tabulator(unique_df, formatters=formatters, sizing_mode='stretch_width', show_index=False, disabled=True, frozen_columns=['Compound ID', 'Compound', 'Scaffold']) # if pie_charts: # unique_table.width = 640 stats_pane.append(pn.Column(f'### {unique_entity}', unique_table)) if pie_charts: for score_name, figure_list in pie_charts.items(): stats_pane.append( pn.Column(f'### {category} by Top {score_name}', pn.Tabs(*figure_list, tabs_location='above')) # pn.Card(pn.Row(v), title=f'{category} by Top {k}') ) if stats_pane: template.main.append(pn.Card(stats_pane, sizing_mode='stretch_width', title='Summary Statistics', margin=10)) template.main.append( pn.Card(report_table, title=f'{job} Results', # width=1200, margin=10) ) template.save(file, resources=INLINE) return file def create_pie_chart(df, category, value, top_k): if category not in df or value not in df: return top_k_df = df.nlargest(top_k, value) category_counts = top_k_df[category].value_counts() data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values}) data['proportion'] = data['value'] / data['value'].sum() # Merge rows with proportion less than 0.2% into one row mask = data['proportion'] < 0.002 if any(mask): merged_row = data[mask].sum() merged_row[category] = '...' data = pd.concat([data[~mask], pd.DataFrame(merged_row).T]) data['angle'] = data['proportion'] * 2 * pi color_dict = {cat: color for cat, color in zip(df[category].unique(), (Category20c_20 * (len(df[category].unique()) // 20 + 1))[:len(df[category].unique())])} color_dict['...'] = '#636363' data['color'] = data[category].map(color_dict) tooltips = [ (f"{category}", f"@{{{category}}}"), ("Count", "@value"), ("Percentage", "@proportion{0.0%}") ] if category == 'Scaffold SMILES': data = data.merge(top_k_df[['Scaffold SMILES', 'Scaffold']].drop_duplicates(), how='left', left_on='Scaffold SMILES', right_on='Scaffold SMILES') tooltips.append(("Scaffold", "
@{Scaffold}{safe}
")) p = figure(height=384, width=960, name=f"Top {top_k}" if top_k < len(df) else 'All', sizing_mode='stretch_height', toolbar_location=None, tools="hover", tooltips=tooltips, x_range=(-0.4, 0.4)) def truncate_label(label, max_length=60): return label if len(label) <= max_length else label[:max_length] + "..." data['legend_field'] = data[category].apply(truncate_label) p.add_layout(Legend(padding=0, margin=0), 'right') p.wedge(x=0, y=1, radius=0.3, start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'), line_color="white", fill_color='color', legend_field='legend_field', source=data) # Limit the number of legend items to 20 and add "..." if there are more than 20 items if len(p.legend.items) > 20: new_legend_items = p.legend.items[:20] new_legend_items.append(LegendItem(label="...")) p.legend.items = new_legend_items p.legend.label_text_font_size = "10pt" p.legend.label_text_font = "courier" p.axis.axis_label = None p.axis.visible = False p.grid.grid_line_color = None p.outline_line_width = 0 p.min_border = 0 p.margin = 0 return p def submit_report(df, score_list, filter_list, task, progress=gr.Progress(track_tqdm=True)): df_report = df.copy() try: for filter_name in filter_list: df_report[filter_name] = df_report['Compound'].swifter.progress_bar( desc=f"Calculating {filter_name}").apply( lambda x: FILTER_MAP[filter_name](x) if not pd.isna(x) else x) for score_name in score_list: df_report[score_name] = df_report['Compound'].swifter.progress_bar( desc=f"Calculating {score_name}").apply( lambda x: SCORE_MAP[score_name](x) if not pd.isna(x) else x) # pie_chart = None # value = None # if 'Y^' in df.columns: # value = 'Y^' # elif 'Y' in df.columns: # value = 'Y' # # if value: # if df['X1'].nunique() > 1 >= df['X2'].nunique(): # pie_chart = create_pie_chart(df, category='Scaffold SMILES', value=value, top_k=100) # elif df['X2'].nunique() > 1 >= df['X1'].nunique(): # pie_chart = create_pie_chart(df, category='Target family', value=value, top_k=100) return (create_html_report(df_report, file=None, task=task), df_report, gr.File(visible=False), gr.File(visible=False)) except Exception as e: gr.Warning(f'Failed to report results due to error: {str(e)}') return None, None, None, None def wrap_text(text, line_length=60): if isinstance(text, str): wrapper = textwrap.TextWrapper(width=line_length) if text.startswith('>'): sections = text.split('>') wrapped_sections = [] for section in sections: if not section: continue lines = section.split('\n') seq_header = lines[0] wrapped_seq = wrapper.fill(''.join(lines[1:])) wrapped_sections.append(f">{seq_header}\n{wrapped_seq}") return '\n'.join(wrapped_sections) else: return wrapper.fill(text) else: return text def unwrap_text(text): return text.strip.replece('\n', '') def drug_library_from_sdf(sdf_path): return PandasTools.LoadSDF( sdf_path, smilesName='X1', molColName='Compound', includeFingerprints=True ) def process_target_library_upload(library_upload): if library_upload.endswith('.csv'): df = pd.read_csv(library_upload) elif library_upload.endswith('.fasta'): df = target_library_from_fasta(library_upload) else: raise gr.Error('Currently only CSV and FASTA files are supported as target libraries.') validate_columns(df, ['X2']) return df def process_drug_library_upload(library_upload): if library_upload.endswith('.csv'): df = pd.read_csv(library_upload) elif library_upload.endswith('.sdf'): df = drug_library_from_sdf(library_upload) else: raise gr.Error('Currently only CSV and SDF files are supported as drug libraries.') validate_columns(df, ['X1']) return df def target_library_from_fasta(fasta_path): records = list(SeqIO.parse(fasta_path, "fasta")) id2 = [record.id for record in records] seq = [str(record.seq) for record in records] df = pd.DataFrame({'ID2': id2, 'X2': seq}) return df theme = gr.themes.Base(spacing_size="sm", text_size='md', font=gr.themes.GoogleFont("Roboto")).set( background_fill_primary='#eef3f9', background_fill_secondary='white', checkbox_label_background_fill='#eef3f9', checkbox_label_background_fill_hover='#dfe6f0', checkbox_background_color='white', checkbox_border_color='#4372c4', border_color_primary='#4372c4', border_color_accent='#2e6ab5', button_primary_background_fill='#2e6ab4', button_primary_text_color='white', body_text_color='#28496F', block_background_fill='#fbfcfd', block_title_text_color='#28496F', block_label_text_color='#28496F', block_info_text_color='#505358', block_border_color=None, # input_border_color='#4372c4', # panel_border_color='#4372c4', input_background_fill='#F1F2F4', ) with gr.Blocks(theme=theme, title='DeepSEQreen', css=CSS, delete_cache=(3600, 48 * 3600)) as demo: run_state = gr.State(value=False) screen_flag = gr.State(value=False) identify_flag = gr.State(value=False) infer_flag = gr.State(value=False) with gr.Tabs() as tabs: with gr.TabItem(label='Drug Hit Screening', id='Drug Hit Screening'): gr.Markdown(''' #
Drug Hit Screening
To predict interactions or binding affinities of a single target against a compound library.
''') with gr.Row(): with gr.Column(): HelpTip( "Enter (paste) a amino acid sequence below manually or upload a FASTA file. " "If multiple entities are in the FASTA, only the first will be used. " "Alternatively, enter a Uniprot ID or gene symbol with organism and click Query for " "the sequence." ) target_input_type = gr.Dropdown( label='Step 1. Select Target Input Type and Input', choices=['Sequence', 'UniProt ID', 'Gene symbol'], info='Enter (paste) a FASTA string below manually or upload a FASTA file.', value='Sequence', scale=4, interactive=True ) with gr.Row(): target_id = gr.Textbox(show_label=False, visible=False, interactive=True, scale=4, info='Enter a UniProt ID and query.') target_gene = gr.Textbox( show_label=False, visible=False, interactive=True, scale=4, info='Enter a gene symbol and query. The first record will be used.') target_organism = gr.Textbox( info='Organism scientific name (default: Homo sapiens).', placeholder='Homo sapiens', show_label=False, visible=False, interactive=True, scale=4, ) target_upload_btn = gr.UploadButton(label='Upload a FASTA File', type='binary', visible=True, variant='primary', size='lg') target_paste_markdown = gr.Button(value='OR Paste Your Sequence Below', variant='secondary') target_query_btn = gr.Button(value='Query the Sequence', variant='primary', visible=False, scale=4) # with gr.Row(): # example_uniprot = gr.Button(value='Example: Q16539', elem_classes='example', visible=False) # example_gene = gr.Button(value='Example: MAPK14', elem_classes='example', visible=False) example_fasta = gr.Button(value='Example: MAPK14 (Q16539)', elem_classes='example') target_fasta = gr.Code(label='Input or Display FASTA', interactive=True, lines=5) # with gr.Row(): # with gr.Column(): # with gr.Column(): # gr.File(label='Example FASTA file', # value='data/examples/MAPK14.fasta', interactive=False) with gr.Row(): with gr.Column(min_width=200): HelpTip( "Click Auto-detect to identify the protein family using sequence alignment. " "This optional step allows applying a family-specific model instead of a all-family " "model (general). " "Manually select general if the alignment results are unsatisfactory." ) drug_screen_target_family = gr.Dropdown( choices=list(TARGET_FAMILY_MAP.keys()), value='General', label='Step 2. Select Target Family (Optional)', interactive=True) target_family_detect_btn = gr.Button(value='OR Let Us Auto-Detect for You', variant='primary') with gr.Column(min_width=200): HelpTip( "Interaction prediction provides you binding probability score between the target of " "interest and each compound in the library, " "while affinity prediction directly estimates their binding strength measured using " "IC50." ) drug_screen_task = gr.Dropdown( list(TASK_MAP.keys()), label='Step 3. Select a Prediction Task', value='Compound-Protein Interaction') with gr.Column(min_width=200): HelpTip( "Select your preferred model, or click Recommend for the best-performing model based " "on the selected task, family, and whether the target was trained. " "Please refer to documentation for detailed benchmark results." ) drug_screen_preset = gr.Dropdown( list(PRESET_MAP.keys()), label='Step 4. Select a Preset Model') screen_preset_recommend_btn = gr.Button( value='OR Let Us Recommend for You', variant='primary') with gr.Row(): with gr.Column(): HelpTip( "Select a preset compound library (e.g., DrugBank). " "Alternatively, upload a CSV file with a column named X1 containing compound SMILES, " "or use an SDF file (Max. 10,000 compounds per task). Example CSV and SDF files are " "provided below and can be downloaded by clicking the lower right corner." ) drug_library = gr.Dropdown( label='Step 5. Select a Preset Compound Library', choices=list(DRUG_LIBRARY_MAP.keys())) with gr.Row(): gr.File(label='Example SDF compound library', value='data/examples/compound_library.sdf', interactive=False) gr.File(label='Example CSV compound library', value='data/examples/compound_library.csv', interactive=False) drug_library_upload_btn = gr.UploadButton( label='OR Upload Your Own Library', variant='primary') drug_library_upload = gr.File(label='Custom compound library file', visible=False) with gr.Row(): with gr.Column(): drug_screen_email = gr.Textbox( label='Step 6. Input Your Email Address (Optional)', info="Your email address will be used to notify you of the status of your job. " "If you cannot receive the email, please check your spam/junk folder." ) with gr.Row(visible=True): with gr.Column(): # drug_screen_clr_btn = gr.ClearButton(size='lg') drug_screen_btn = gr.Button(value='SUBMIT THE SCREENING JOB', variant='primary', size='lg') # TODO Modify the pd df directly with df['X2'] = target screen_data_for_predict = gr.File(visible=False, file_count="single", type='filepath') with gr.TabItem(label='Target Protein Identification', id='Target Protein Identification'): gr.Markdown(''' #
Target Protein Identification
To predict interactions or binding affinities of a single compound against a protein library.
''') with gr.Column() as identify_page: with gr.Row(): with gr.Column(): HelpTip( "Enter (paste) a compound SMILES below manually or upload a SDF file. " "If multiple entities are in the SDF, only the first will be used. " "SMILES can be obtained by searching for the compound of interest in databases such " "as NCBI, PubChem and and ChEMBL." ) compound_type = gr.Dropdown( label='Step 1. Select Compound Input Type and Input', choices=['SMILES', 'SDF'], info='Enter (paste) an SMILES string or upload an SDF file to convert to SMILES.', value='SMILES', interactive=True) compound_upload_btn = gr.UploadButton( label='OR Upload a SDF File', variant='primary', type='binary', visible=False) compound_smiles = gr.Code(label='Input or Display Compound SMILES', interactive=True, lines=5) example_drug = gr.Button(value='Example: Aspirin', elem_classes='example') with gr.Row(): with gr.Column(visible=False): HelpTip( "By default, models trained on all protein families (general) will be applied. " # "If the proteins in the target library of interest all belong to the same protein " # "family, manually selecting the family is supported." ) target_identify_target_family = gr.Dropdown( choices=['General'], value='General', label='Target Family') with gr.Row(): with gr.Column(): HelpTip( "Interaction prediction provides you binding probability score between the target of " "interest and each compound in the library, while affinity prediction directly " "estimates their binding strength measured using IC50." ) target_identify_task = gr.Dropdown( list(TASK_MAP.keys()), label='Step 2. Select a Prediction Task', value='Compound-Protein Interaction') with gr.Column(): HelpTip( "Select your preferred model, or click Recommend for the best-performing model based " "on the selected task and whether the compound was trained. By default, General-trained " "model is used for Target Protein Identification. " "Please refer to the documentation for detailed benchmark results." ) target_identify_preset = gr.Dropdown( list(PRESET_MAP.keys()), label='Step 3. Select a Preset Model') identify_preset_recommend_btn = gr.Button(value='OR Let Us Recommend for You', variant='primary') with gr.Row(): with gr.Column(): HelpTip( "Select a preset target library (e.g., ChEMBL33_human_proteins). " "Alternatively, upload a CSV file with a column named X2 containing target protein " "sequences, or use an FASTA file (Max. 10,000 targets per task). " "Example CSV and SDF files are provided below " "and can be downloaded by clicking the lower right corner." ) target_library = gr.Dropdown( label='Step 4. Select a Preset Target Library', choices=list(TARGET_LIBRARY_MAP.keys())) with gr.Row(): gr.File(label='Example FASTA target library', value='data/examples/target_library.fasta', interactive=False) gr.File(label='Example CSV target library', value='data/examples/target_library.csv', interactive=False) target_library_upload_btn = gr.UploadButton( label='OR Upload Your Own Library', variant='primary') target_library_upload = gr.File(label='Custom target library file', visible=False) with gr.Row(): with gr.Column(): target_identify_email = gr.Textbox( label='Step 5. Input Your Email Address (Optional)', info="Your email address will be used to notify you of the status of your job. " "If you cannot receive the email, please check your spam/junk folder." ) with gr.Row(visible=True): # target_identify_clr_btn = gr.ClearButton(size='lg') target_identify_btn = gr.Button(value='SUBMIT THE IDENTIFICATION JOB', variant='primary', size='lg') identify_data_for_predict = gr.File(visible=False, file_count="single", type='filepath') with gr.TabItem(label='Interaction Pair Inference', id='Interaction Pair Inference'): gr.Markdown(''' #
Interaction Pair Inference
To predict interactions or binding affinities between up to 10,000 paired compound-protein data.
''') HelpTip( "A custom interation pair dataset can be a CSV file with 2 required columns " "(X1 for smiles and X2 for sequences) " "and optionally 2 ID columns (ID1 for compound ID and ID2 for target ID), " "or generated from a FASTA file containing multiple " "sequences and a SDF file containing multiple compounds. " "Currently, a maximum of 10,000 pairs is supported, " "which means that the size of CSV file or " "the product of the two library sizes should not exceed 10,000." ) infer_type = gr.Dropdown( choices=['Upload a CSV file containing paired compound-protein data', 'Upload a compound library and a target library'], label='Step 1. Select Pair Input Type and Input', value='Upload a CSV file containing paired compound-protein data') with gr.Column() as pair_upload: gr.File(label="Example CSV dataset", value="data/examples/interaction_pair_inference.csv", interactive=False) with gr.Row(): infer_csv_prompt = gr.Button( value="Upload Your Own Dataset Below", variant='secondary') with gr.Column(): infer_pair = gr.File( label='Upload CSV File Containing Paired Records', file_count="single", type='filepath', visible=True) with gr.Column(visible=False) as pair_generate: with gr.Row(): gr.File(label='Example SDF compound library', value='data/examples/compound_library.sdf', interactive=False) gr.File(label='Example FASTA target library', value='data/examples/target_library.fasta', interactive=False) with gr.Row(): gr.File(label='Example CSV compound library', value='data/examples/compound_library.csv', interactive=False) gr.File(label='Example CSV target library', value='data/examples/target_library.csv', interactive=False) with gr.Row(): infer_library_prompt = gr.Button( value="Upload Your Own Libraries Below", visible=False, variant='secondary') with gr.Row(): infer_drug = gr.File(label='Upload SDF/CSV File Containing Multiple Compounds', file_count="single", type='filepath') infer_target = gr.File(label='Upload FASTA/CSV File Containing Multiple Targets', file_count="single", type='filepath') with gr.Row(): with gr.Column(min_width=200): HelpTip( "By default, models trained on all protein families (general) will be applied. " "If the proteins in the target library of interest " "all belong to the same protein family, manually selecting the family is supported." ) pair_infer_target_family = gr.Dropdown( choices=list(TARGET_FAMILY_MAP.keys()), value='General', label='Step 2. Select Target Family (Optional)') with gr.Column(min_width=200): HelpTip( "Interaction prediction provides you binding probability score " "between the target of interest and each compound in the library, " "while affinity prediction directly estimates their binding strength " "measured using IC50." ) pair_infer_task = gr.Dropdown( list(TASK_MAP.keys()), label='Step 3. Select a Prediction Task', value='Compound-Protein Interaction') with gr.Column(min_width=200): HelpTip("Select your preferred model. " "Please refer to documentation for detailed benchmark results." ) pair_infer_preset = gr.Dropdown( list(PRESET_MAP.keys()), label='Step 4. Select a Preset Model') # infer_preset_recommend_btn = gr.Button(value='OR Let Us Recommend for You', # variant='primary') with gr.Row(): pair_infer_email = gr.Textbox( label='Step 5. Input Your Email Address (Optional)', info="Your email address will be used to notify you of the status of your job. " "If you cannot receive the email, please check your spam/junk folder.") with gr.Row(visible=True): # pair_infer_clr_btn = gr.ClearButton(size='lg') pair_infer_btn = gr.Button(value='SUBMIT THE INFERENCE JOB', variant='primary', size='lg') infer_data_for_predict = gr.File(file_count="single", type='filepath', visible=False) with gr.TabItem(label='Chemical Property Report', id='Chemical Property Report'): gr.Markdown(''' #
Chemical Property Report
To compute chemical properties for the predictions of Drug Hit Screening, Target Protein Identification, and Interaction Pair Inference. You may also upload your own dataset using a CSV file containing one required column `X1` for compound SMILES. The page shows only a preview report displaying at most 30 records (with top predicted CPI/CPA if reporting results from a prediction job). Please first `Preview` the report, then `Generate` and download a CSV report or an interactive HTML report below if you wish to access the full report. ''') with gr.Row(): with gr.Column(): file_for_report = gr.File(interactive=True, type='filepath') report_task = gr.Dropdown(list(TASK_MAP.keys()), visible=False, value=None, label='Specify the Task Labels in the Upload Dataset') raw_df = gr.State(value=pd.DataFrame()) report_df = gr.State(value=pd.DataFrame()) scores = gr.CheckboxGroup(list(SCORE_MAP.keys()), label='Scores') filters = gr.CheckboxGroup(list(FILTER_MAP.keys()), label='Filters') with gr.Row(): # clear_btn = gr.ClearButton(size='lg') analyze_btn = gr.Button('Preview Top 30 Records', variant='primary', size='lg', interactive=False) with gr.Row(): with gr.Column(scale=3): html_report = gr.HTML() # label='Results', visible=True) ranking_pie_chart = gr.Plot(visible=False) with gr.Row(): with gr.Column(): csv_generate = gr.Button(value='Generate CSV Report', interactive=False, variant='primary') csv_download_file = gr.File(label='Download CSV Report', visible=False) with gr.Column(): html_generate = gr.Button(value='Generate HTML Report', interactive=False, variant='primary') html_download_file = gr.File(label='Download HTML Report', visible=False) with gr.TabItem(label='Prediction Status Lookup', id='Prediction Status Lookup'): gr.Markdown(''' #
Prediction Status Lookup
To check the status of an in-progress or historical job using the job ID and retrieve the predictions if the job has completed. Note that predictions are only kept for 48 hours upon job completion. You will be redirected to Chemical Property Report for carrying out further analysis and generating the full report if the job is done. If the Lookup fails to respond, please come back in five minutes, refresh the page, and try again. ''') with gr.Column(): pred_lookup_id = gr.Textbox( label='Input Your Job ID', placeholder='e.g., e9dfd149-3f5c-48a6-b797-c27d027611ac', info="Your job ID is a UUID4 string that you receive after submitting a job on the " "page or in the email notification.") pred_lookup_btn = gr.Button(value='Lookup the Job Status', variant='primary', visible=True) pred_lookup_stop_btn = gr.Button(value='Stop Tracking', variant='stop', visible=False) pred_lookup_status = gr.Markdown() # retrieve_email = gr.Textbox(label='Step 2. Input Your Email Address', placeholder='e.g., def target_input_type_select(input_type): match input_type: case 'UniProt ID': return [gr.Dropdown(info=''), gr.UploadButton(visible=False), gr.Textbox(visible=True, value=''), gr.Textbox(visible=False, value=''), gr.Textbox(visible=False, value=''), gr.Button(visible=True), gr.Code(value=''), gr.Button(visible=False)] case 'Gene symbol': return [gr.Dropdown(info=''), gr.UploadButton(visible=False), gr.Textbox(visible=False, value=''), gr.Textbox(visible=True, value=''), gr.Textbox(visible=True, value=''), gr.Button(visible=True), gr.Code(value=''), gr.Button(visible=False)] case 'Sequence': return [gr.Dropdown(info='Enter (paste) a FASTA string below manually or upload a FASTA file.'), gr.UploadButton(visible=True), gr.Textbox(visible=False, value=''), gr.Textbox(visible=False, value=''), gr.Textbox(visible=False, value=''), gr.Button(visible=False), gr.Code(value=''), gr.Button(visible=True)] target_input_type.select( fn=target_input_type_select, inputs=target_input_type, outputs=[ target_input_type, target_upload_btn, target_id, target_gene, target_organism, target_query_btn, target_fasta, target_paste_markdown ], show_progress='hidden' ) def uniprot_query(input_type, uid, gene, organism='Human'): uniprot_endpoint = 'https://rest.uniprot.org/uniprotkb/{query}' fasta_rec = '' match input_type: case 'UniProt ID': query = f"{uid.strip()}.fasta" case 'Gene symbol': organism = organism if organism else 'Human' query = f'search?query=organism_name:{organism.strip()}+AND+gene:{gene.strip()}&format=fasta' try: fasta = session.get(uniprot_endpoint.format(query=query)) fasta.raise_for_status() if fasta.text: fasta_rec = next(SeqIO.parse(io.StringIO(fasta.text), format='fasta')) fasta_rec = f">{fasta_rec.description}\n{fasta_rec.seq}" except Exception as e: raise gr.Warning(f"Failed to query FASTA from UniProt database due to {str(e)}") finally: return fasta_rec def process_fasta_upload(fasta_upload): fasta = '' try: fasta = fasta_upload.decode() except Exception as e: gr.Warning(f"Please upload a valid FASTA file. Error: {str(e)}") return fasta target_upload_btn.upload( fn=process_fasta_upload, inputs=target_upload_btn, outputs=target_fasta ).then( fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden' ) target_query_btn.click( fn=uniprot_query, inputs=[target_input_type, target_id, target_gene, target_organism], outputs=target_fasta ).then( fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden' ) def target_family_detect(fasta, progress=gr.Progress(track_tqdm=True)): try: aligner = PairwiseAligner(scoring='blastp', mode='local') alignment_df = pd.read_csv('data/target_libraries/ChEMBL33_all_spe_single_prot_info.csv') processed_fasta = process_target_fasta(fasta) # Check for an exact match first exact_match = alignment_df[alignment_df['X2'] == processed_fasta] if not exact_match.empty: row = exact_match.iloc[0] return gr.Dropdown(value=row['protein_family'], info=f"Reason: Exact match found with {row['ID2']} from family {row['protein_family']}") # If no exact match, then calculate alignment score def align_score(query): return aligner.align(processed_fasta, query).score alignment_df['score'] = alignment_df['X2'].swifter.progress_bar( desc="Detecting protein family of the target...").apply(align_score) row = alignment_df.loc[alignment_df['score'].idxmax()] return gr.Dropdown(value=row['protein_family'], info=f"Reason: Best BLASTP score ({row['score']}) " f"with {row['ID2']} from family {row['protein_family']}") except Exception as e: gr.Warning("Failed to detect the protein family due to error: " + str(e)) target_family_detect_btn.click(fn=target_family_detect, inputs=target_fasta, outputs=drug_screen_target_family) # target_fasta.focus(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden') target_fasta.blur(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress='hidden') drug_library_upload_btn.upload(fn=lambda x: [ x.name, gr.Dropdown(value=Path(x.name).name, choices=list(DRUG_LIBRARY_MAP.keys()) + [Path(x.name).name]) ], inputs=drug_library_upload_btn, outputs=[drug_library_upload, drug_library]) def example_fill(input_type): return {target_id: 'Q16539', target_gene: 'MAPK14', target_organism: 'Human', target_fasta: """ >sp|Q16539|MK14_HUMAN Mitogen-activated protein kinase 14 OS=Homo sapiens OX=9606 GN=MAPK14 PE=1 SV=3 MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQ SIIHAKRTYRELRLLKHMKHENVIGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQ KLTDDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCELKILDFGLARHTDDEMT GYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVG TPGAELLKKISSESARNYIQSLTQMPKMNFANVFIGANPLAVDLLEKMLVLDSDKRITAA QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES """} example_fasta.click(fn=example_fill, inputs=target_input_type, outputs=[ target_id, target_gene, target_organism, target_fasta], show_progress='hidden') def screen_recommend_model(fasta, family, task): task = TASK_MAP[task] score = TASK_METRIC_MAP[task] benchmark_df = pd.read_csv(f'data/benchmarks/{task}_test_metrics.csv') if not fasta: gr.Warning('Please enter a valid FASTA for model recommendation.') return [None, family] if family == 'General': seen_targets = pd.read_csv( f'data/benchmarks/seen_targets/all_families_full_{task.lower()}_random_split.csv') if process_target_fasta(fasta) in seen_targets['X2'].values: scenario = "Seen Target" else: scenario = "Unseen Target" filtered_df = benchmark_df[(benchmark_df['Family'] == 'All Families') & (benchmark_df['Scenario'] == scenario) & (benchmark_df['Type'] == 'General')] else: seen_targets_general = pd.read_csv( f'data/benchmarks/seen_targets/all_families_full_{task.lower()}_random_split.csv') if process_target_fasta(fasta) in seen_targets_general['X2'].values: scenario_general = "Seen Target" else: scenario_general = "Unseen Target" seen_targets_family = pd.read_csv( f'data/benchmarks/seen_targets/{TARGET_FAMILY_MAP[family]}_{task.lower()}_random_split.csv') if process_target_fasta(fasta) in seen_targets_family['X2'].values: scenario_family = "Seen Target" else: scenario_family = "Unseen Target" filtered_df_general = benchmark_df[(benchmark_df['Family'] == family) & (benchmark_df['Scenario'] == scenario_general) & (benchmark_df['Type'] == 'General')] filtered_df_family = benchmark_df[(benchmark_df['Family'] == family) & (benchmark_df['Scenario'] == scenario_family) & (benchmark_df['Type'] == 'Family')] filtered_df = pd.concat([filtered_df_general, filtered_df_family]) row = filtered_df.loc[filtered_df[score].idxmax()] return {drug_screen_preset: gr.Dropdown(value=row['Model'], info=f"Reason: {row['Scenario']} in training; we recommend the {row['Type']}-trained " f"model with the best {score} ({float(row[score]):.3f}) " f"in the {row['Scenario']} scenario on {row['Family']}."), drug_screen_target_family: gr.Dropdown(value='General') if row['Type'] == 'General' else gr.Dropdown(value=family)} screen_preset_recommend_btn.click(fn=screen_recommend_model, inputs=[target_fasta, drug_screen_target_family, drug_screen_task], outputs=[drug_screen_preset, drug_screen_target_family], show_progress='hidden') def compound_input_type_select(input_type): match input_type: case 'SMILES': return gr.Button(visible=False) case 'SDF': return gr.Button(visible=True) compound_type.select(fn=compound_input_type_select, inputs=compound_type, outputs=compound_upload_btn, show_progress='hidden') def compound_upload_process(input_type, input_upload): smiles = '' try: match input_type: case 'SMILES': smiles = input_upload.decode() case 'SDF': suppl = Chem.ForwardSDMolSupplier(io.BytesIO(input_upload)) smiles = Chem.MolToSmiles(next(suppl)) except Exception as e: gr.Warning(f"Please upload a valid {input_type} file. Error: {str(e)}") return smiles compound_upload_btn.upload(fn=compound_upload_process, inputs=[compound_type, compound_upload_btn], outputs=compound_smiles) example_drug.click(fn=lambda: 'CC(=O)Oc1ccccc1C(=O)O', outputs=compound_smiles, show_progress='hidden') target_library_upload_btn.upload(fn=lambda x: [ x.name, gr.Dropdown(value=Path(x.name).name, choices=list(TARGET_LIBRARY_MAP.keys()) + [Path(x.name).name]) ], inputs=target_library_upload_btn, outputs=[target_library_upload, target_library]) def identify_recommend_model(smiles, task): task = TASK_MAP[task] score = TASK_METRIC_MAP[task] benchmark_df = pd.read_csv(f'data/benchmarks/{task}_test_metrics.csv') if not smiles: gr.Warning('Please enter a valid SMILES for model recommendation.') return None seen_drugs = pd.read_csv( f'data/benchmarks/seen_drugs/all_families_full_{task.lower()}_random_split.csv') if rdkit_canonicalize(smiles) in seen_drugs['X1'].values: scenario = "Seen Compound" else: scenario = "Unseen Compound" filtered_df = benchmark_df[(benchmark_df['Family'] == 'All Families') & (benchmark_df['Scenario'] == scenario) & (benchmark_df['Type'] == 'General')] row = filtered_df.loc[filtered_df[score].idxmax()] return gr.Dropdown(value=row['Model'], info=f"Reason: {scenario} in training; choosing the model " f"with the best {score} ({float(row[score]):.3f}) " f"in the {scenario} scenario.") identify_preset_recommend_btn.click(fn=identify_recommend_model, inputs=[compound_smiles, target_identify_task], outputs=target_identify_preset, show_progress='hidden') def infer_type_change(upload_type): match upload_type: case "Upload a compound library and a target library": return { pair_upload: gr.Column(visible=False), pair_generate: gr.Column(visible=True), infer_pair: None, infer_drug: None, infer_target: None, infer_csv_prompt: gr.Button(visible=False), infer_library_prompt: gr.Button(visible=True), } match upload_type: case "Upload a CSV file containing paired compound-protein data": return { pair_upload: gr.Column(visible=True), pair_generate: gr.Column(visible=False), infer_pair: None, infer_drug: None, infer_target: None, infer_csv_prompt: gr.Button(visible=True), infer_library_prompt: gr.Button(visible=False), } infer_type.select(fn=infer_type_change, inputs=infer_type, outputs=[pair_upload, pair_generate, infer_pair, infer_drug, infer_target, infer_csv_prompt, infer_library_prompt], show_progress='hidden') def common_input_validate(state, preset, email, request): gr.Info('Start processing inputs...') if not preset: raise gr.Error('Please select a model.') if email: try: email_info = validate_email(email, check_deliverability=False) email = email_info.normalized except EmailNotValidError as e: raise gr.Error(f"Invalid email address: {str(e)}.") if state: raise gr.Error(f"You already have a running prediction job (ID: {state['id']}) under this session. " "Please wait for it to complete before submitting another job.") if check := check_user_running_job(email, request): raise gr.Error(check) return state, preset, email def common_job_initiate(job_id, job_type, email, request, task): gr.Info('Finished processing inputs. Initiating the prediction job... ' 'You will be redirected to Prediction Status Lookup after the job is submitted.') job_info = {'id': job_id, 'type': job_type, 'task': task, 'status': 'RUNNING', 'email': email, 'ip': request.headers.get('x-forwarded-for', request.client.host), 'cookies': dict(request.cookies), 'start_time': time(), 'end_time': None, 'expiry_time': None, 'error': None} db.insert(job_info) return job_info def drug_screen_validate(fasta, library, library_upload, preset, task, email, state, request: gr.Request, progress=gr.Progress(track_tqdm=True)): state, preset, email = common_input_validate(state, preset, email, request) fasta = process_target_fasta(fasta) err = validate_seq_str(fasta, FASTA_PAT) if err: raise gr.Error(f'Found error(s) in your Target FASTA input: {err}') if not library: raise gr.Error('Please select or upload a compound library.') if library in DRUG_LIBRARY_MAP.keys(): screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library])) else: screen_df = process_drug_library_upload(library_upload) if len(screen_df) >= DATASET_MAX_LEN: raise gr.Error(f'The uploaded compound library has more records ' f'than the allowed maximum {DATASET_MAX_LEN}.') screen_df['X2'] = fasta job_id = str(uuid4()) temp_file = Path(f'{SERVER_DATA_DIR}/{job_id}_input.csv').resolve() screen_df.to_csv(temp_file, index=False) if temp_file.is_file(): job_info = common_job_initiate(job_id, 'Drug Hit Screening', email, request, task) return {screen_data_for_predict: str(temp_file), run_state: job_info} else: raise gr.Error('System failed to create temporary files. Please try again later.') def target_identify_validate(smiles, library, library_upload, preset, task, email, state, request: gr.Request, progress=gr.Progress(track_tqdm=True)): state, preset, email = common_input_validate(state, preset, email, request) smiles = smiles.strip() err = validate_seq_str(smiles, SMILES_PAT) if err: raise gr.Error(f'Found error(s) in your Compound SMILES input: {err}') if not library: raise gr.Error('Please select or upload a target library.') if library in TARGET_LIBRARY_MAP.keys(): identify_df = pd.read_csv(Path('data/target_libraries', TARGET_LIBRARY_MAP[library])) else: identify_df = process_target_library_upload(library_upload) if len(identify_df) >= DATASET_MAX_LEN: raise gr.Error(f'The uploaded target library has more records ' f'than the allowed maximum {DATASET_MAX_LEN}.') identify_df['X1'] = smiles job_id = str(uuid4()) temp_file = Path(f'{SERVER_DATA_DIR}/{job_id}_input.csv').resolve() identify_df.to_csv(temp_file, index=False) if temp_file.is_file(): job_info = common_job_initiate(job_id, 'Target Protein Identification', email, request, task) return {identify_data_for_predict: str(temp_file), run_state: job_info} else: raise gr.Error('System failed to create temporary files. Please try again later.') def pair_infer_validate(drug_target_pair_upload, drug_upload, target_upload, preset, task, email, state, request: gr.Request, progress=gr.Progress(track_tqdm=True)): state, preset, email = common_input_validate(state, preset, email, request) job_id = str(uuid4()) if drug_target_pair_upload: infer_df = pd.read_csv(drug_target_pair_upload) validate_columns(infer_df, ['X1', 'X2']) infer_df['X1_ERR'] = infer_df['X1'].swifter.progress_bar(desc="Validating SMILES...").apply( validate_seq_str, regex=SMILES_PAT) if not infer_df['X1_ERR'].isna().all(): raise ValueError( f"Encountered invalid SMILES:\n{infer_df[~infer_df['X1_ERR'].isna()][['X1', 'X1_ERR']]}") infer_df['X2_ERR'] = infer_df['X2'].swifter.progress_bar(desc="Validating FASTA...").apply( validate_seq_str, regex=FASTA_PAT) if not infer_df['X2_ERR'].isna().all(): raise ValueError( f"Encountered invalid FASTA:\n{infer_df[~infer_df['X2_ERR'].isna()][['X2', 'X2_ERR']]}") temp_file = Path(drug_target_pair_upload).resolve() elif drug_upload and target_upload: drug_df = process_drug_library_upload(drug_upload) target_df = process_target_library_upload(target_upload) drug_df.drop_duplicates(subset=['X1'], inplace=True) target_df.drop_duplicates(subset=['X2'], inplace=True) infer_df = pd.DataFrame(list(itertools.product(drug_df['X1'], target_df['X2'])), columns=['X1', 'X2']) infer_df = infer_df.merge(drug_df, on='X1').merge(target_df, on='X2') if len(infer_df) >= DATASET_MAX_LEN: raise gr.Error(f'The uploaded/generated compound-protein pair dataset has more records ' f'than the allowed maximum {DATASET_MAX_LEN}.') temp_file = Path(f'{SERVER_DATA_DIR}/{job_id}_input.csv').resolve() infer_df.to_csv(temp_file, index=False) else: raise gr.Error('Should upload a compound-protein pair dataset, or ' 'upload both a compound library and a target library.') if temp_file.is_file(): job_info = common_job_initiate(job_id, 'Interaction Pair Inference', email, request, task) return {infer_data_for_predict: str(temp_file), run_state: job_info} else: raise gr.Error('System failed to create temporary files. Please try again later.') def fill_job_id(job_info): try: return job_info['id'] except Exception as e: gr.Warning(f'Failed to fetch job ID due to error: {str(e)}') return '' drug_screen_click = drug_screen_btn.click( fn=drug_screen_validate, inputs=[target_fasta, drug_library, drug_library_upload, drug_screen_preset, drug_screen_task, drug_screen_email, run_state], outputs=[screen_data_for_predict, run_state], concurrency_limit=2, ) drug_screen_lookup = drug_screen_click.success( fn=lambda: gr.Tabs(selected='Prediction Status Lookup'), outputs=[tabs], ).then( fn=fill_job_id, inputs=[run_state], outputs=[pred_lookup_id] ).then( fn=lookup_job, inputs=[pred_lookup_id], outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report], show_progress='minimal', concurrency_limit=100, ) drug_screen_click.success( fn=send_email, inputs=[run_state] ) drug_screen_click.success( fn=submit_predict, inputs=[screen_data_for_predict, drug_screen_task, drug_screen_preset, drug_screen_target_family, run_state, ], outputs=[run_state, ] ) target_identify_click = target_identify_btn.click( fn=target_identify_validate, inputs=[compound_smiles, target_library, target_library_upload, target_identify_preset, target_identify_task, target_identify_email, run_state], outputs=[identify_data_for_predict, run_state], concurrency_limit=2, ) target_identify_lookup = target_identify_click.success( fn=lambda: gr.Tabs(selected='Prediction Status Lookup'), outputs=[tabs], ).then( fn=fill_job_id, inputs=[run_state], outputs=[pred_lookup_id] ).then( fn=lookup_job, inputs=[pred_lookup_id], outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report], show_progress='minimal', concurrency_limit=100 ) target_identify_click.success( fn=send_email, inputs=[run_state] ) target_identify_click.success( fn=submit_predict, inputs=[identify_data_for_predict, target_identify_task, target_identify_preset, target_identify_target_family, run_state, ], # , target_identify_email], outputs=[run_state, ] ) pair_infer_click = pair_infer_btn.click( fn=pair_infer_validate, inputs=[infer_pair, infer_drug, infer_target, pair_infer_preset, pair_infer_task, pair_infer_email, run_state], outputs=[infer_data_for_predict, run_state], concurrency_limit=2, ) pair_infer_lookup = pair_infer_click.success( fn=lambda: gr.Tabs(selected='Prediction Status Lookup'), outputs=[tabs], ).then( fn=fill_job_id, inputs=[run_state], outputs=[pred_lookup_id] ).then( fn=lookup_job, inputs=[pred_lookup_id], outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report], show_progress='minimal', concurrency_limit=100 ) pair_infer_click.success( fn=send_email, inputs=[run_state] ) pair_infer_click.success( fn=submit_predict, inputs=[infer_data_for_predict, pair_infer_task, pair_infer_preset, pair_infer_target_family, run_state, ], # , pair_infer_email], outputs=[run_state, ] ) pred_lookup_click = pred_lookup_btn.click( fn=lookup_job, inputs=[pred_lookup_id], outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, file_for_report], show_progress='minimal', cancels=[drug_screen_lookup, target_identify_lookup, pair_infer_lookup], concurrency_limit=100, ) pred_lookup_stop_btn.click( fn=lambda: [gr.Button(visible=True), gr.Button(visible=False)], outputs=[pred_lookup_btn, pred_lookup_stop_btn], cancels=[pred_lookup_click, drug_screen_lookup, target_identify_lookup, pair_infer_lookup], concurrency_limit=None, ) def inquire_task(df): if 'Y' in df.columns: label = 'actual CPI/CPA labels (`Y`)' elif 'Y^' in df.columns: label = 'predicted CPI/CPA labels (`Y^`)' else: return {analyze_btn: gr.Button(interactive=True), csv_generate: gr.Button(interactive=True), html_generate: gr.Button(interactive=True)} return {report_task: gr.Dropdown(visible=True, info=f'Found {label} in your uploaded dataset. ' 'Is it compound-protein interaction or binding affinity?'), html_report: '', analyze_btn: gr.Button(interactive=False), csv_generate: gr.Button(interactive=False), html_generate: gr.Button(interactive=False)} report_df_change = file_for_report.change( fn=update_df, inputs=file_for_report, outputs=[html_report, raw_df, report_df, analyze_btn, report_task], concurrency_limit=100, ) file_for_report.upload( fn=update_df, inputs=file_for_report, outputs=[html_report, raw_df, report_df, analyze_btn, report_task], cancels=[report_df_change], concurrency_limit=100, ).then( fn=inquire_task, inputs=[raw_df], outputs=[report_task, html_report, analyze_btn, csv_generate, html_generate], ) file_for_report.clear( fn=lambda: [gr.Button(interactive=False)] * 3 + [gr.File(visible=False, value=None)] * 2 + [gr.Dropdown(visible=False, value=None), gr.HTML(visible=False)], outputs=[ csv_generate, html_generate, analyze_btn, csv_download_file, html_download_file, report_task, html_report ] ) analyze_btn.click( fn=submit_report, inputs=[raw_df, scores, filters, report_task], outputs=[ html_report, report_df, csv_download_file, html_download_file] ).success( fn=lambda: [gr.Button(interactive=True)] * 2, outputs=[csv_generate, html_generate], concurrency_limit=100, ) report_task.select(fn=lambda: gr.Button(interactive=True), outputs=analyze_btn) def create_csv_report_file(df, file_report, progress=gr.Progress(track_tqdm=True)): try: now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") filename = f"/data/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.csv" df.drop(labels=['Compound', 'Scaffold'], axis=1).to_csv(filename, index=True, na_rep='') return gr.File(filename) except Exception as e: gr.Warning(f"Failed to generate CSV due to error: {str(e)}") return None def create_html_report_file(df, file_report, task, progress=gr.Progress(track_tqdm=True)): try: now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") filename = f"/data/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.html" create_html_report(df, filename, task) return gr.File(filename, visible=True) except Exception as e: gr.Warning(f"Failed to generate HTML due to error: {str(e)}") return None html_report.change(lambda: [gr.Button(visible=True)] * 2, outputs=[csv_generate, html_generate]) csv_generate.click( lambda: [gr.Button(visible=False), gr.File(visible=True)], outputs=[csv_generate, csv_download_file], ).then(fn=create_csv_report_file, inputs=[report_df, file_for_report], outputs=csv_download_file, show_progress='full') html_generate.click( lambda: [gr.Button(visible=False), gr.File(visible=True)], outputs=[html_generate, html_download_file], ).then(fn=create_html_report_file, inputs=[report_df, file_for_report, report_task], outputs=html_download_file, show_progress='full') if __name__ == "__main__": hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference") demo.queue(default_concurrency_limit=None, max_size=10).launch(show_api=False)