Spaces:
Sleeping
Sleeping
File size: 10,687 Bytes
9439b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import math
import torch.nn.functional as F
import numpy as np
import torch
def quaternion_to_matrix(quaternions):
"""
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def axis_angle_to_quaternion(axis_angle):
"""
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
Convert rotations given as axis/angle to quaternions.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
half_angles = 0.5 * angles
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
quaternions = torch.cat(
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
)
return quaternions
def axis_angle_to_matrix(axis_angle):
"""
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
Convert rotations given as axis/angle to rotation matrices.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
ret[positive_mask] = torch.sqrt(x[positive_mask])
return ret
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
return quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,))
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as quaternions to axis/angle.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotations given as a vector in axis angle form, as a tensor
of shape (..., 3), where the magnitude is the angle
turned anticlockwise in radians around the vector's
direction.
"""
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
half_angles = torch.atan2(norms, quaternions[..., :1])
angles = 2 * half_angles
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
return quaternions[..., 1:] / sin_half_angles_over_angles
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to axis/angle.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
Rotations given as a vector in axis angle form, as a tensor
of shape (..., 3), where the magnitude is the angle
turned anticlockwise in radians around the vector's
direction.
"""
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
def rigid_transform_Kabsch_3D_torch(A, B):
# R = 3x3 rotation matrix, t = 3x1 column vector
# This already takes residue identity into account.
assert A.shape[1] == B.shape[1]
num_rows, num_cols = A.shape
if num_rows != 3:
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}")
num_rows, num_cols = B.shape
if num_rows != 3:
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}")
# find mean column wise: 3 x 1
centroid_A = torch.mean(A, axis=1, keepdims=True)
centroid_B = torch.mean(B, axis=1, keepdims=True)
# subtract mean
Am = A - centroid_A
Bm = B - centroid_B
H = Am @ Bm.T
# find rotation
U, S, Vt = torch.linalg.svd(H)
R = Vt.T @ U.T
# special reflection case
if torch.linalg.det(R) < 0:
# print("det(R) < R, reflection detected!, correcting for it ...")
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device))
R = (Vt.T @ SS) @ U.T
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher
t = -R @ centroid_A + centroid_B
return R, t
def rigid_transform_Kabsch_3D_torch_batch(A, B):
# R = Bx3x3 rotation matrix, t = Bx3x1 column vector
assert A.shape == B.shape
_, N, M = A.shape
if M != 3:
raise Exception(f"matrix A and B should be BxNx3")
A, B = A.permute(0, 2, 1), B.permute(0, 2, 1)
# find mean column wise: 3 x 1
centroid_A = torch.mean(A, axis=2, keepdims=True)
centroid_B = torch.mean(B, axis=2, keepdims=True)
# subtract mean
Am = A - centroid_A
Bm = B - centroid_B
H = torch.bmm(Am, Bm.transpose(1, 2))
# find rotation
U, S, Vt = torch.linalg.svd(H)
R = torch.bmm(Vt.transpose(1, 2), U.transpose(1, 2))
# reflection case
SS = torch.diag(torch.tensor([1., 1., -1.], device=A.device))
Rm = torch.bmm(Vt.transpose(1,2) @ SS, U.transpose(1, 2))
R = torch.where(torch.linalg.det(R)[:, None, None] < 0, Rm, R)
assert torch.all(torch.abs(torch.linalg.det(R) - 1) < 3e-3) # note I had to change this error bound to be higher
t = torch.bmm(-R, centroid_A) + centroid_B
return R, t
def rigid_transform_Kabsch_independent_torch(A, B):
# R = 3x3 rotation matrix, t = 3x1 column vector
# This already takes residue identity into account.
assert A.shape[1] == B.shape[1]
num_rows, num_cols = A.shape
if num_rows != 3:
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}")
num_rows, num_cols = B.shape
if num_rows != 3:
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}")
# find mean column wise: 3 x 1
centroid_A = torch.mean(A, axis=1, keepdims=True)
centroid_B = torch.mean(B, axis=1, keepdims=True)
# subtract mean
Am = A - centroid_A
Bm = B - centroid_B
H = Am @ Bm.T
# find rotation
U, S, Vt = torch.linalg.svd(H)
R = Vt.T @ U.T
# special reflection case
if torch.linalg.det(R) < 0:
# print("det(R) < R, reflection detected!, correcting for it ...")
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device))
R = (Vt.T @ SS) @ U.T
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher
t = - centroid_A + centroid_B # note does not change rotation
R_vec = matrix_to_axis_angle(R)
return t, R_vec
|