File size: 10,687 Bytes
9439b9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import math
import torch.nn.functional as F
import numpy as np
import torch


def quaternion_to_matrix(quaternions):
    """
    From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
    Convert rotations given as quaternions to rotation matrices.

    Args:
        quaternions: quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    r, i, j, k = torch.unbind(quaternions, -1)
    two_s = 2.0 / (quaternions * quaternions).sum(-1)

    o = torch.stack(
        (
            1 - two_s * (j * j + k * k),
            two_s * (i * j - k * r),
            two_s * (i * k + j * r),
            two_s * (i * j + k * r),
            1 - two_s * (i * i + k * k),
            two_s * (j * k - i * r),
            two_s * (i * k - j * r),
            two_s * (j * k + i * r),
            1 - two_s * (i * i + j * j),
        ),
        -1,
    )
    return o.reshape(quaternions.shape[:-1] + (3, 3))


def axis_angle_to_quaternion(axis_angle):
    """
    From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
    Convert rotations given as axis/angle to quaternions.

    Args:
        axis_angle: Rotations given as a vector in axis angle form,
            as a tensor of shape (..., 3), where the magnitude is
            the angle turned anticlockwise in radians around the
            vector's direction.

    Returns:
        quaternions with real part first, as tensor of shape (..., 4).
    """
    angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
    half_angles = 0.5 * angles
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
            torch.sin(half_angles[~small_angles]) / angles[~small_angles]
    )
    # for x small, sin(x/2) is about x/2 - (x/2)^3/6
    # so sin(x/2)/x is about 1/2 - (x*x)/48
    sin_half_angles_over_angles[small_angles] = (
            0.5 - (angles[small_angles] * angles[small_angles]) / 48
    )
    quaternions = torch.cat(
        [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
    )
    return quaternions


def axis_angle_to_matrix(axis_angle):
    """
    From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
    Convert rotations given as axis/angle to rotation matrices.

    Args:
        axis_angle: Rotations given as a vector in axis angle form,
            as a tensor of shape (..., 3), where the magnitude is
            the angle turned anticlockwise in radians around the
            vector's direction.

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))


def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
    """
    Returns torch.sqrt(torch.max(0, x))
    but with a zero subgradient where x is 0.
    """
    ret = torch.zeros_like(x)
    positive_mask = x > 0
    ret[positive_mask] = torch.sqrt(x[positive_mask])
    return ret


def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as rotation matrices to quaternions.

    Args:
        matrix: Rotation matrices as tensor of shape (..., 3, 3).

    Returns:
        quaternions with real part first, as tensor of shape (..., 4).
    """
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")

    batch_dim = matrix.shape[:-2]
    m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
        matrix.reshape(batch_dim + (9,)), dim=-1
    )

    q_abs = _sqrt_positive_part(
        torch.stack(
            [
                1.0 + m00 + m11 + m22,
                1.0 + m00 - m11 - m22,
                1.0 - m00 + m11 - m22,
                1.0 - m00 - m11 + m22,
            ],
            dim=-1,
        )
    )

    # we produce the desired quaternion multiplied by each of r, i, j, k
    quat_by_rijk = torch.stack(
        [
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
        ],
        dim=-2,
    )

    # We floor here at 0.1 but the exact level is not important; if q_abs is small,
    # the candidate won't be picked.
    flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))

    # if not for numerical problems, quat_candidates[i] should be same (up to a sign),
    # forall i; we pick the best-conditioned one (with the largest denominator)

    return quat_candidates[
        F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
    ].reshape(batch_dim + (4,))


def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as quaternions to axis/angle.

    Args:
        quaternions: quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Rotations given as a vector in axis angle form, as a tensor
            of shape (..., 3), where the magnitude is the angle
            turned anticlockwise in radians around the vector's
            direction.
    """
    norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
    half_angles = torch.atan2(norms, quaternions[..., :1])
    angles = 2 * half_angles
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
        torch.sin(half_angles[~small_angles]) / angles[~small_angles]
    )
    # for x small, sin(x/2) is about x/2 - (x/2)^3/6
    # so sin(x/2)/x is about 1/2 - (x*x)/48
    sin_half_angles_over_angles[small_angles] = (
        0.5 - (angles[small_angles] * angles[small_angles]) / 48
    )
    return quaternions[..., 1:] / sin_half_angles_over_angles


def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as rotation matrices to axis/angle.

    Args:
        matrix: Rotation matrices as tensor of shape (..., 3, 3).

    Returns:
        Rotations given as a vector in axis angle form, as a tensor
            of shape (..., 3), where the magnitude is the angle
            turned anticlockwise in radians around the vector's
            direction.
    """
    return quaternion_to_axis_angle(matrix_to_quaternion(matrix))


def rigid_transform_Kabsch_3D_torch(A, B):
    # R = 3x3 rotation matrix, t = 3x1 column vector
    # This already takes residue identity into account.

    assert A.shape[1] == B.shape[1]
    num_rows, num_cols = A.shape
    if num_rows != 3:
        raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}")
    num_rows, num_cols = B.shape
    if num_rows != 3:
        raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}")

    # find mean column wise: 3 x 1
    centroid_A = torch.mean(A, axis=1, keepdims=True)
    centroid_B = torch.mean(B, axis=1, keepdims=True)

    # subtract mean
    Am = A - centroid_A
    Bm = B - centroid_B

    H = Am @ Bm.T

    # find rotation
    U, S, Vt = torch.linalg.svd(H)

    R = Vt.T @ U.T
    # special reflection case
    if torch.linalg.det(R) < 0:
        # print("det(R) < R, reflection detected!, correcting for it ...")
        SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device))
        R = (Vt.T @ SS) @ U.T
    assert math.fabs(torch.linalg.det(R) - 1) < 3e-3  # note I had to change this error bound to be higher

    t = -R @ centroid_A + centroid_B
    return R, t


def rigid_transform_Kabsch_3D_torch_batch(A, B):
    # R = Bx3x3 rotation matrix, t = Bx3x1 column vector

    assert A.shape == B.shape
    _, N, M = A.shape
    if M != 3:
        raise Exception(f"matrix A and B should be BxNx3")

    A, B = A.permute(0, 2, 1), B.permute(0, 2, 1)

    # find mean column wise: 3 x 1
    centroid_A = torch.mean(A, axis=2, keepdims=True)
    centroid_B = torch.mean(B, axis=2, keepdims=True)

    # subtract mean
    Am = A - centroid_A
    Bm = B - centroid_B
    H = torch.bmm(Am, Bm.transpose(1, 2))

    # find rotation
    U, S, Vt = torch.linalg.svd(H)
    R = torch.bmm(Vt.transpose(1, 2), U.transpose(1, 2))

    # reflection case
    SS = torch.diag(torch.tensor([1., 1., -1.], device=A.device))
    Rm = torch.bmm(Vt.transpose(1,2) @ SS, U.transpose(1, 2))
    R = torch.where(torch.linalg.det(R)[:, None, None] < 0, Rm, R)
    assert torch.all(torch.abs(torch.linalg.det(R) - 1) < 3e-3)  # note I had to change this error bound to be higher

    t = torch.bmm(-R, centroid_A) + centroid_B
    return R, t


def rigid_transform_Kabsch_independent_torch(A, B):
    # R = 3x3 rotation matrix, t = 3x1 column vector
    # This already takes residue identity into account.

    assert A.shape[1] == B.shape[1]
    num_rows, num_cols = A.shape
    if num_rows != 3:
        raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}")
    num_rows, num_cols = B.shape
    if num_rows != 3:
        raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}")

    # find mean column wise: 3 x 1
    centroid_A = torch.mean(A, axis=1, keepdims=True)
    centroid_B = torch.mean(B, axis=1, keepdims=True)

    # subtract mean
    Am = A - centroid_A
    Bm = B - centroid_B

    H = Am @ Bm.T

    # find rotation
    U, S, Vt = torch.linalg.svd(H)

    R = Vt.T @ U.T
    # special reflection case
    if torch.linalg.det(R) < 0:
        # print("det(R) < R, reflection detected!, correcting for it ...")
        SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device))
        R = (Vt.T @ SS) @ U.T
    assert math.fabs(torch.linalg.det(R) - 1) < 3e-3  # note I had to change this error bound to be higher

    t = - centroid_A + centroid_B # note does not change rotation
    R_vec = matrix_to_axis_angle(R)
    return t, R_vec