Spaces:
Sleeping
Sleeping
File size: 15,783 Bytes
9439b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import copy
import random
import numpy as np
import torch
from torch_geometric.data import Batch
from torch_geometric.loader import DataLoader
from utils.diffusion_utils import modify_conformer, set_time, modify_conformer_batch
from utils.torsion import modify_conformer_torsion_angles
from scipy.spatial.transform import Rotation as R
from utils.utils import crop_beyond
from utils.logging_utils import get_logger
def randomize_position(data_list, no_torsion, no_random, tr_sigma_max, pocket_knowledge=False, pocket_cutoff=7,
initial_noise_std_proportion=-1.0, choose_residue=False):
# in place modification of the list
center_pocket = data_list[0]['receptor'].pos.mean(dim=0)
if pocket_knowledge:
complex = data_list[0]
d = torch.cdist(complex['receptor'].pos, torch.from_numpy(complex['ligand'].orig_pos[0]).float() - complex.original_center)
label = torch.any(d < pocket_cutoff, dim=1)
if torch.any(label):
center_pocket = complex['receptor'].pos[label].mean(dim=0)
else:
print("No pocket residue below minimum distance ", pocket_cutoff, "taking closest at", torch.min(d))
center_pocket = complex['receptor'].pos[torch.argmin(torch.min(d, dim=1)[0])]
if not no_torsion:
# randomize torsion angles
for complex_graph in data_list:
torsion_updates = np.random.uniform(low=-np.pi, high=np.pi, size=complex_graph['ligand'].edge_mask.sum())
complex_graph['ligand'].pos = \
modify_conformer_torsion_angles(complex_graph['ligand'].pos,
complex_graph['ligand', 'ligand'].edge_index.T[
complex_graph['ligand'].edge_mask],
complex_graph['ligand'].mask_rotate[0], torsion_updates)
for complex_graph in data_list:
# randomize position
molecule_center = torch.mean(complex_graph['ligand'].pos, dim=0, keepdim=True)
random_rotation = torch.from_numpy(R.random().as_matrix()).float()
complex_graph['ligand'].pos = (complex_graph['ligand'].pos - molecule_center) @ random_rotation.T + center_pocket
# base_rmsd = np.sqrt(np.sum((complex_graph['ligand'].pos.cpu().numpy() - orig_complex_graph['ligand'].pos.numpy()) ** 2, axis=1).mean())
if not no_random: # note for now the torsion angles are still randomised
if choose_residue:
idx = random.randint(0, len(complex_graph['receptor'].pos)-1)
tr_update = torch.normal(mean=complex_graph['receptor'].pos[idx:idx+1], std=0.01)
elif initial_noise_std_proportion >= 0.0:
std_rec = torch.sqrt(torch.mean(torch.sum(complex_graph['receptor'].pos ** 2, dim=1)))
tr_update = torch.normal(mean=0, std=std_rec * initial_noise_std_proportion / 1.73, size=(1, 3))
else:
# if initial_noise_std_proportion < 0.0, we use the tr_sigma_max multiplied by -initial_noise_std_proportion
tr_update = torch.normal(mean=0, std=-initial_noise_std_proportion * tr_sigma_max, size=(1, 3))
complex_graph['ligand'].pos += tr_update
def is_iterable(arr):
try:
some_object_iterator = iter(arr)
return True
except TypeError as te:
return False
def sampling(data_list, model, inference_steps, tr_schedule, rot_schedule, tor_schedule, device, t_to_sigma, model_args,
no_random=False, ode=False, visualization_list=None, confidence_model=None, confidence_data_list=None, confidence_model_args=None,
t_schedule=None, batch_size=32, no_final_step_noise=False, pivot=None, return_full_trajectory=False,
temp_sampling=1.0, temp_psi=0.0, temp_sigma_data=0.5, return_features=False):
N = len(data_list)
trajectory = []
logger = get_logger()
if return_features:
lig_features, rec_features = [], []
assert batch_size >= N, "Not implemented yet"
loader = DataLoader(data_list, batch_size=batch_size)
assert not (return_full_trajectory or return_features or pivot), "Not implemented yet in new inference version"
mask_rotate = torch.from_numpy(data_list[0]['ligand'].mask_rotate[0]).to(device)
confidence = None
if confidence_model is not None:
confidence_loader = iter(DataLoader(confidence_data_list, batch_size=batch_size))
confidence = []
with torch.no_grad():
for batch_id, complex_graph_batch in enumerate(loader):
b = complex_graph_batch.num_graphs
n = len(complex_graph_batch['ligand'].pos) // b
complex_graph_batch = complex_graph_batch.to(device)
for t_idx in range(inference_steps):
t_tr, t_rot, t_tor = tr_schedule[t_idx], rot_schedule[t_idx], tor_schedule[t_idx]
dt_tr = tr_schedule[t_idx] - tr_schedule[t_idx + 1] if t_idx < inference_steps - 1 else tr_schedule[t_idx]
dt_rot = rot_schedule[t_idx] - rot_schedule[t_idx + 1] if t_idx < inference_steps - 1 else rot_schedule[t_idx]
dt_tor = tor_schedule[t_idx] - tor_schedule[t_idx + 1] if t_idx < inference_steps - 1 else tor_schedule[t_idx]
tr_sigma, rot_sigma, tor_sigma = t_to_sigma(t_tr, t_rot, t_tor)
if hasattr(model_args, 'crop_beyond') and model_args.crop_beyond is not None:
#print('Cropping beyond', tr_sigma * 3 + model_args.crop_beyond, 'for score model')
mod_complex_graph_batch = copy.deepcopy(complex_graph_batch).to_data_list()
for batch in mod_complex_graph_batch:
crop_beyond(batch, tr_sigma * 3 + model_args.crop_beyond, model_args.all_atoms)
mod_complex_graph_batch = Batch.from_data_list(mod_complex_graph_batch)
else:
mod_complex_graph_batch = complex_graph_batch
set_time(mod_complex_graph_batch, t_schedule[t_idx] if t_schedule is not None else None, t_tr, t_rot, t_tor, b,
'all_atoms' in model_args and model_args.all_atoms, device)
tr_score, rot_score, tor_score = model(mod_complex_graph_batch)[:3]
mean_scores = torch.mean(tr_score, dim=-1)
num_nans = torch.sum(torch.isnan(mean_scores))
if num_nans > 0:
name = complex_graph_batch['name']
if isinstance(name, list):
name = name[0]
logger.warning(f"Complex {name} Batch {batch_id+1} Inference Iteration {t_idx}: "
f"{num_nans} / {mean_scores.numel()} samples failed")
# Set the nan values to a small value, just want to disturb slightly
# Hopefully won't get nan the next iteration
tr_score.nan_to_num_(nan=(eps := 0.01*torch.nanmean(tr_score.abs())), posinf=eps, neginf=-eps)
rot_score.nan_to_num_(nan=(eps := 0.01*torch.nanmean(rot_score.abs())), posinf=eps, neginf=-eps)
tor_score.nan_to_num_(nan=(eps := 0.01*torch.nanmean(tor_score.abs())), posinf=eps, neginf=-eps)
del eps
tr_g = tr_sigma * torch.sqrt(torch.tensor(2 * np.log(model_args.tr_sigma_max / model_args.tr_sigma_min)))
rot_g = rot_sigma * torch.sqrt(torch.tensor(2 * np.log(model_args.rot_sigma_max / model_args.rot_sigma_min)))
if ode:
tr_perturb = (0.5 * tr_g ** 2 * dt_tr * tr_score)
rot_perturb = (0.5 * rot_score * dt_rot * rot_g ** 2)
else:
tr_z = torch.zeros((min(batch_size, N), 3), device=device) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \
else torch.normal(mean=0, std=1, size=(min(batch_size, N), 3), device=device)
tr_perturb = (tr_g ** 2 * dt_tr * tr_score + tr_g * np.sqrt(dt_tr) * tr_z)
rot_z = torch.zeros((min(batch_size, N), 3), device=device) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \
else torch.normal(mean=0, std=1, size=(min(batch_size, N), 3), device=device)
rot_perturb = (rot_score * dt_rot * rot_g ** 2 + rot_g * np.sqrt(dt_rot) * rot_z)
if not model_args.no_torsion:
tor_g = tor_sigma * torch.sqrt(torch.tensor(2 * np.log(model_args.tor_sigma_max / model_args.tor_sigma_min)))
if ode:
tor_perturb = (0.5 * tor_g ** 2 * dt_tor * tor_score)
else:
tor_z = torch.zeros(tor_score.shape, device=device) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \
else torch.normal(mean=0, std=1, size=tor_score.shape, device=device)
tor_perturb = (tor_g ** 2 * dt_tor * tor_score + tor_g * np.sqrt(dt_tor) * tor_z)
torsions_per_molecule = tor_perturb.shape[0] // b
else:
tor_perturb = None
if not is_iterable(temp_sampling):
temp_sampling = [temp_sampling] * 3
if not is_iterable(temp_psi):
temp_psi = [temp_psi] * 3
if not is_iterable(temp_sampling): temp_sampling = [temp_sampling] * 3
if not is_iterable(temp_psi): temp_psi = [temp_psi] * 3
if not is_iterable(temp_sigma_data): temp_sigma_data = [temp_sigma_data] * 3
assert len(temp_sampling) == 3
assert len(temp_psi) == 3
assert len(temp_sigma_data) == 3
if temp_sampling[0] != 1.0:
tr_sigma_data = np.exp(temp_sigma_data[0] * np.log(model_args.tr_sigma_max) + (1 - temp_sigma_data[0]) * np.log(model_args.tr_sigma_min))
lambda_tr = (tr_sigma_data + tr_sigma) / (tr_sigma_data + tr_sigma / temp_sampling[0])
tr_perturb = (tr_g ** 2 * dt_tr * (lambda_tr + temp_sampling[0] * temp_psi[0] / 2) * tr_score + tr_g * np.sqrt(dt_tr * (1 + temp_psi[0])) * tr_z)
if temp_sampling[1] != 1.0:
rot_sigma_data = np.exp(temp_sigma_data[1] * np.log(model_args.rot_sigma_max) + (1 - temp_sigma_data[1]) * np.log(model_args.rot_sigma_min))
lambda_rot = (rot_sigma_data + rot_sigma) / (rot_sigma_data + rot_sigma / temp_sampling[1])
rot_perturb = (rot_g ** 2 * dt_rot * (lambda_rot + temp_sampling[1] * temp_psi[1] / 2) * rot_score + rot_g * np.sqrt(dt_rot * (1 + temp_psi[1])) * rot_z)
if temp_sampling[2] != 1.0:
tor_sigma_data = np.exp(temp_sigma_data[2] * np.log(model_args.tor_sigma_max) + (1 - temp_sigma_data[2]) * np.log(model_args.tor_sigma_min))
lambda_tor = (tor_sigma_data + tor_sigma) / (tor_sigma_data + tor_sigma / temp_sampling[2])
tor_perturb = (tor_g ** 2 * dt_tor * (lambda_tor + temp_sampling[2] * temp_psi[2] / 2) * tor_score + tor_g * np.sqrt(dt_tor * (1 + temp_psi[2])) * tor_z)
# Apply noise
complex_graph_batch['ligand'].pos = \
modify_conformer_batch(complex_graph_batch['ligand'].pos, complex_graph_batch, tr_perturb, rot_perturb,
tor_perturb if not model_args.no_torsion else None, mask_rotate)
if visualization_list is not None:
for idx_b in range(b):
visualization_list[batch_id * batch_size + idx_b].add((
complex_graph_batch['ligand'].pos[idx_b*n:n*(idx_b+1)].detach().cpu() +
data_list[batch_id * batch_size + idx_b].original_center.detach().cpu()),
part=1, order=t_idx + 2)
for i in range(b):
data_list[batch_id * batch_size + i]['ligand'].pos = complex_graph_batch['ligand'].pos[i*n:n*(i+1)]
if visualization_list is not None:
for idx, visualization in enumerate(visualization_list):
visualization.add((data_list[idx]['ligand'].pos.detach().cpu() + data_list[idx].original_center.detach().cpu()),
part=1, order=2)
if confidence_model is not None:
if confidence_data_list is not None:
confidence_complex_graph_batch = next(confidence_loader)
confidence_complex_graph_batch['ligand'].pos = complex_graph_batch['ligand'].pos.cpu()
if hasattr(confidence_model_args, 'crop_beyond') and confidence_model_args.crop_beyond is not None:
confidence_complex_graph_batch = confidence_complex_graph_batch.to_data_list()
for batch in confidence_complex_graph_batch:
crop_beyond(batch, confidence_model_args.crop_beyond, confidence_model_args.all_atoms)
confidence_complex_graph_batch = Batch.from_data_list(confidence_complex_graph_batch)
confidence_complex_graph_batch = confidence_complex_graph_batch.to(device)
set_time(confidence_complex_graph_batch, 0, 0, 0, 0, b, confidence_model_args.all_atoms, device)
out = confidence_model(confidence_complex_graph_batch)
else:
out = confidence_model(complex_graph_batch)
if type(out) is tuple:
out = out[0]
confidence.append(out)
if confidence_model is not None:
confidence = torch.cat(confidence, dim=0)
confidence = torch.nan_to_num(confidence, nan=-1000)
if return_full_trajectory:
return data_list, confidence, trajectory
elif return_features:
lig_features = torch.cat(lig_features, dim=0)
rec_features = torch.cat(rec_features, dim=0)
return data_list, confidence, lig_features, rec_features
return data_list, confidence
def compute_affinity(data_list, affinity_model, affinity_data_list, device, parallel, all_atoms, include_miscellaneous_atoms):
with torch.no_grad():
if affinity_model is not None:
assert parallel <= len(data_list)
loader = DataLoader(data_list, batch_size=parallel)
complex_graph_batch = next(iter(loader)).to(device)
positions = complex_graph_batch['ligand'].pos
assert affinity_data_list is not None
complex_graph = affinity_data_list[0]
N = complex_graph['ligand'].num_nodes
complex_graph['ligand'].x = complex_graph['ligand'].x.repeat(parallel, 1)
complex_graph['ligand'].edge_mask = complex_graph['ligand'].edge_mask.repeat(parallel)
complex_graph['ligand', 'ligand'].edge_index = torch.cat(
[N * i + complex_graph['ligand', 'ligand'].edge_index for i in range(parallel)], dim=1)
complex_graph['ligand', 'ligand'].edge_attr = complex_graph['ligand', 'ligand'].edge_attr.repeat(parallel, 1)
complex_graph['ligand'].pos = positions
affinity_loader = DataLoader([complex_graph], batch_size=1)
affinity_batch = next(iter(affinity_loader)).to(device)
set_time(affinity_batch, 0, 0, 0, 0, 1, all_atoms, device, include_miscellaneous_atoms=include_miscellaneous_atoms)
_, affinity = affinity_model(affinity_batch)
else:
affinity = None
return affinity |