Spaces:
Sleeping
Sleeping
File size: 20,702 Bytes
9439b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import os
import subprocess
import warnings
from datetime import datetime
from typing import List
import numpy
import numpy as np
import torch
import yaml
from rdkit import Chem
from rdkit.Chem import RemoveHs, MolToPDBFile
from torch import nn, Tensor
from torch_geometric.nn.data_parallel import DataParallel
from torch_geometric.utils import degree, subgraph
from models.aa_model import AAModel
from models.cg_model import CGModel
from models.old_aa_model import AAOldModel
from models.old_cg_model import CGOldModel
from utils.diffusion_utils import get_timestep_embedding
def get_obrmsd(mol1_path, mol2_path, cache_name=None):
cache_name = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f') if cache_name is None else cache_name
os.makedirs(".openbabel_cache", exist_ok=True)
if not isinstance(mol1_path, str):
MolToPDBFile(mol1_path, '.openbabel_cache/obrmsd_mol1_cache.pdb')
mol1_path = '.openbabel_cache/obrmsd_mol1_cache.pdb'
if not isinstance(mol2_path, str):
MolToPDBFile(mol2_path, '.openbabel_cache/obrmsd_mol2_cache.pdb')
mol2_path = '.openbabel_cache/obrmsd_mol2_cache.pdb'
with warnings.catch_warnings():
warnings.simplefilter("ignore")
return_code = subprocess.run(f"obrms {mol1_path} {mol2_path} > .openbabel_cache/obrmsd_{cache_name}.rmsd",
shell=True)
print(return_code)
obrms_output = read_strings_from_txt(f".openbabel_cache/obrmsd_{cache_name}.rmsd")
rmsds = [line.split(" ")[-1] for line in obrms_output]
return np.array(rmsds, dtype=np.float)
def remove_all_hs(mol):
params = Chem.RemoveHsParameters()
params.removeAndTrackIsotopes = True
params.removeDefiningBondStereo = True
params.removeDegreeZero = True
params.removeDummyNeighbors = True
params.removeHigherDegrees = True
params.removeHydrides = True
params.removeInSGroups = True
params.removeIsotopes = True
params.removeMapped = True
params.removeNonimplicit = True
params.removeOnlyHNeighbors = True
params.removeWithQuery = True
params.removeWithWedgedBond = True
return RemoveHs(mol, params)
def read_strings_from_txt(path):
# every line will be one element of the returned list
with open(path) as file:
lines = file.readlines()
return [line.rstrip() for line in lines]
def unbatch(src, batch: Tensor, dim: int = 0) -> List[Tensor]:
r"""Splits :obj:`src` according to a :obj:`batch` vector along dimension
:obj:`dim`.
Args:
src (Tensor): The source tensor.
batch (LongTensor): The batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
entry in :obj:`src` to a specific example. Must be ordered.
dim (int, optional): The dimension along which to split the :obj:`src`
tensor. (default: :obj:`0`)
:rtype: :class:`List[Tensor]`
"""
sizes = degree(batch, dtype=torch.long).tolist()
if isinstance(src, numpy.ndarray):
return np.split(src, np.array(sizes).cumsum()[:-1], axis=dim)
else:
return src.split(sizes, dim)
def unbatch_edge_index(edge_index: Tensor, batch: Tensor) -> List[Tensor]:
r"""Splits the :obj:`edge_index` according to a :obj:`batch` vector.
Args:
edge_index (Tensor): The edge_index tensor. Must be ordered.
batch (LongTensor): The batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. Must be ordered.
:rtype: :class:`List[Tensor]`
"""
deg = degree(batch, dtype=torch.int64)
ptr = torch.cat([deg.new_zeros(1), deg.cumsum(dim=0)[:-1]], dim=0)
edge_batch = batch[edge_index[0]]
edge_index = edge_index - ptr[edge_batch]
sizes = degree(edge_batch, dtype=torch.int64).cpu().tolist()
return edge_index.split(sizes, dim=1)
def unbatch_edge_attributes(edge_attributes, edge_index: Tensor, batch: Tensor) -> List[Tensor]:
edge_batch = batch[edge_index[0]]
sizes = degree(edge_batch, dtype=torch.int64).cpu().tolist()
return edge_attributes.split(sizes, dim=0)
def save_yaml_file(path, content):
assert isinstance(path, str), f'path must be a string, got {path} which is a {type(path)}'
content = yaml.dump(data=content)
if '/' in path and os.path.dirname(path) and not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
with open(path, 'w') as f:
f.write(content)
def unfreeze_layer(model):
for name, child in (model.named_children()):
#print(name, child.parameters())
for param in child.parameters():
param.requires_grad = True
def get_optimizer_and_scheduler(args, model, scheduler_mode='min', step=0, optimizer=None):
if args.scheduler == 'layer_linear_warmup':
if step == 0:
for name, child in (model.named_children()):
if name.find('batch_norm') == -1:
for name, param in child.named_parameters():
if name.find('batch_norm') == -1:
param.requires_grad = False
for l in [model.center_edge_embedding, model.final_conv, model.tr_final_layer, model.rot_final_layer,
model.final_edge_embedding, model.final_tp_tor, model.tor_bond_conv, model.tor_final_layer]:
unfreeze_layer(l)
elif 0 < step <= args.num_conv_layers:
unfreeze_layer(model.conv_layers[-step])
elif step == args.num_conv_layers + 1:
for l in [model.lig_node_embedding, model.lig_edge_embedding, model.rec_node_embedding, model.rec_edge_embedding,
model.rec_sigma_embedding, model.cross_edge_embedding, model.rec_emb_layers, model.lig_emb_layers]:
unfreeze_layer(l)
if step == 0 or args.scheduler == 'layer_linear_warmup':
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.w_decay)
scheduler_plateau = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=scheduler_mode, factor=0.7, patience=args.scheduler_patience, min_lr=args.lr / 100)
if args.scheduler == 'plateau':
scheduler = scheduler_plateau
elif args.scheduler == 'linear_warmup' or args.scheduler == 'layer_linear_warmup':
if (args.scheduler == 'linear_warmup' and step < 1) or \
(args.scheduler == 'layer_linear_warmup' and step <= args.num_conv_layers + 1):
scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=args.lr_start_factor, end_factor=1.0,
total_iters=args.warmup_dur)
else:
scheduler = scheduler_plateau
else:
print('No scheduler')
scheduler = None
return optimizer, scheduler
def get_model(args, device, t_to_sigma, no_parallel=False, confidence_mode=False, old=False):
timestep_emb_func = get_timestep_embedding(
embedding_type=args.embedding_type if 'embedding_type' in args else 'sinusoidal',
embedding_dim=args.sigma_embed_dim,
embedding_scale=args.embedding_scale if 'embedding_type' in args else 10000)
if old:
if 'all_atoms' in args and args.all_atoms:
model_class = AAOldModel
else:
model_class = CGOldModel
lm_embedding_type = None
if args.esm_embeddings_path is not None: lm_embedding_type = 'esm'
model = model_class(t_to_sigma=t_to_sigma,
device=device,
no_torsion=args.no_torsion,
timestep_emb_func=timestep_emb_func,
num_conv_layers=args.num_conv_layers,
lig_max_radius=args.max_radius,
scale_by_sigma=args.scale_by_sigma,
sigma_embed_dim=args.sigma_embed_dim,
norm_by_sigma='norm_by_sigma' in args and args.norm_by_sigma,
ns=args.ns, nv=args.nv,
distance_embed_dim=args.distance_embed_dim,
cross_distance_embed_dim=args.cross_distance_embed_dim,
batch_norm=not args.no_batch_norm,
dropout=args.dropout,
use_second_order_repr=args.use_second_order_repr,
cross_max_distance=args.cross_max_distance,
dynamic_max_cross=args.dynamic_max_cross,
smooth_edges=args.smooth_edges if "smooth_edges" in args else False,
odd_parity=args.odd_parity if "odd_parity" in args else False,
lm_embedding_type=lm_embedding_type,
confidence_mode=confidence_mode,
affinity_prediction=args.affinity_prediction if 'affinity_prediction' in args else False,
parallel=args.parallel if "parallel" in args else 1,
num_confidence_outputs=len(
args.rmsd_classification_cutoff) + 1 if 'rmsd_classification_cutoff' in args and isinstance(
args.rmsd_classification_cutoff, list) else 1,
parallel_aggregators=args.parallel_aggregators if "parallel_aggregators" in args else "",
fixed_center_conv=not args.not_fixed_center_conv if "not_fixed_center_conv" in args else False,
no_aminoacid_identities=args.no_aminoacid_identities if "no_aminoacid_identities" in args else False,
include_miscellaneous_atoms=args.include_miscellaneous_atoms if hasattr(args, 'include_miscellaneous_atoms') else False,
use_old_atom_encoder=args.use_old_atom_encoder if hasattr(args, 'use_old_atom_encoder') else True)
else:
if 'all_atoms' in args and args.all_atoms:
model_class = AAModel
else:
model_class = CGModel
lm_embedding_type = None
if ('moad_esm_embeddings_path' in args and args.moad_esm_embeddings_path is not None) or \
('pdbbind_esm_embeddings_path' in args and args.pdbbind_esm_embeddings_path is not None) or \
('pdbsidechain_esm_embeddings_path' in args and args.pdbsidechain_esm_embeddings_path is not None) or \
('esm_embeddings_path' in args and args.esm_embeddings_path is not None):
lm_embedding_type = 'precomputed'
if 'esm_embeddings_model' in args and args.esm_embeddings_model is not None: lm_embedding_type = args.esm_embeddings_model
model = model_class(t_to_sigma=t_to_sigma,
device=device,
no_torsion=args.no_torsion,
timestep_emb_func=timestep_emb_func,
num_conv_layers=args.num_conv_layers,
lig_max_radius=args.max_radius,
scale_by_sigma=args.scale_by_sigma,
sigma_embed_dim=args.sigma_embed_dim,
norm_by_sigma='norm_by_sigma' in args and args.norm_by_sigma,
ns=args.ns, nv=args.nv,
distance_embed_dim=args.distance_embed_dim,
cross_distance_embed_dim=args.cross_distance_embed_dim,
batch_norm=not args.no_batch_norm,
dropout=args.dropout,
use_second_order_repr=args.use_second_order_repr,
cross_max_distance=args.cross_max_distance,
dynamic_max_cross=args.dynamic_max_cross,
smooth_edges=args.smooth_edges if "smooth_edges" in args else False,
odd_parity=args.odd_parity if "odd_parity" in args else False,
lm_embedding_type=lm_embedding_type,
confidence_mode=confidence_mode,
affinity_prediction=args.affinity_prediction if 'affinity_prediction' in args else False,
parallel=args.parallel if "parallel" in args else 1,
num_confidence_outputs=len(
args.rmsd_classification_cutoff) + 1 if 'rmsd_classification_cutoff' in args and isinstance(
args.rmsd_classification_cutoff, list) else 1,
atom_num_confidence_outputs=len(
args.atom_rmsd_classification_cutoff) + 1 if 'atom_rmsd_classification_cutoff' in args and isinstance(
args.atom_rmsd_classification_cutoff, list) else 1,
parallel_aggregators=args.parallel_aggregators if "parallel_aggregators" in args else "",
fixed_center_conv=not args.not_fixed_center_conv if "not_fixed_center_conv" in args else False,
no_aminoacid_identities=args.no_aminoacid_identities if "no_aminoacid_identities" in args else False,
include_miscellaneous_atoms=args.include_miscellaneous_atoms if hasattr(args, 'include_miscellaneous_atoms') else False,
sh_lmax=args.sh_lmax if 'sh_lmax' in args else 2,
differentiate_convolutions=not args.no_differentiate_convolutions if "no_differentiate_convolutions" in args else True,
tp_weights_layers=args.tp_weights_layers if "tp_weights_layers" in args else 2,
num_prot_emb_layers=args.num_prot_emb_layers if "num_prot_emb_layers" in args else 0,
reduce_pseudoscalars=args.reduce_pseudoscalars if "reduce_pseudoscalars" in args else False,
embed_also_ligand=args.embed_also_ligand if "embed_also_ligand" in args else False,
atom_confidence=args.atom_confidence_loss_weight > 0.0 if "atom_confidence_loss_weight" in args else False,
sidechain_pred=(hasattr(args, 'sidechain_loss_weight') and args.sidechain_loss_weight > 0) or
(hasattr(args, 'backbone_loss_weight') and args.backbone_loss_weight > 0),
depthwise_convolution=args.depthwise_convolution if hasattr(args, 'depthwise_convolution') else False)
if device.type == 'cuda' and not no_parallel and ('dataset' not in args or not args.dataset == 'torsional'):
model = DataParallel(model)
model.to(device)
return model
import signal
from contextlib import contextmanager
class TimeoutException(Exception): pass
@contextmanager
def time_limit(seconds):
def signal_handler(signum, frame):
raise TimeoutException("Timed out!")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds)
try:
yield
finally:
signal.alarm(0)
class ExponentialMovingAverage:
""" from https://github.com/yang-song/score_sde_pytorch/blob/main/models/ema.py
Maintains (exponential) moving average of a set of parameters. """
def __init__(self, parameters, decay, use_num_updates=True):
"""
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the result of
`model.parameters()`.
decay: The exponential decay.
use_num_updates: Whether to use number of updates when computing
averages.
"""
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.decay = decay
self.num_updates = 0 if use_num_updates else None
self.shadow_params = [p.clone().detach()
for p in parameters if p.requires_grad]
self.collected_params = []
def update(self, parameters):
"""
Update currently maintained parameters.
Call this every time the parameters are updated, such as the result of
the `optimizer.step()` call.
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the same set of
parameters used to initialize this object.
"""
decay = self.decay
if self.num_updates is not None:
self.num_updates += 1
decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
with torch.no_grad():
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
s_param.sub_(one_minus_decay * (s_param - param))
def copy_to(self, parameters):
"""
Copy current parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages.
"""
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
if param.requires_grad:
param.data.copy_(s_param.data)
def store(self, parameters):
"""
Save the current parameters for restoring later.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.collected_params = [param.clone() for param in parameters]
def restore(self, parameters):
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters.
"""
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
def state_dict(self):
return dict(decay=self.decay, num_updates=self.num_updates,
shadow_params=self.shadow_params)
def load_state_dict(self, state_dict, device):
self.decay = state_dict['decay']
self.num_updates = state_dict['num_updates']
self.shadow_params = [tensor.to(device) for tensor in state_dict['shadow_params']]
def crop_beyond(complex_graph, cutoff, all_atoms):
ligand_pos = complex_graph['ligand'].pos
receptor_pos = complex_graph['receptor'].pos
residues_to_keep = torch.any(torch.sum((ligand_pos.unsqueeze(0) - receptor_pos.unsqueeze(1)) ** 2, -1) < cutoff ** 2, dim=1)
if all_atoms:
#print(complex_graph['atom'].x.shape, complex_graph['atom'].pos.shape, complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index.shape)
atom_to_res_mapping = complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index[1]
atoms_to_keep = residues_to_keep[atom_to_res_mapping]
rec_remapper = (torch.cumsum(residues_to_keep.long(), dim=0) - 1)
atom_to_res_new_mapping = rec_remapper[atom_to_res_mapping][atoms_to_keep]
atom_res_edge_index = torch.stack([torch.arange(len(atom_to_res_new_mapping), device=atom_to_res_new_mapping.device), atom_to_res_new_mapping])
complex_graph['receptor'].pos = complex_graph['receptor'].pos[residues_to_keep]
complex_graph['receptor'].x = complex_graph['receptor'].x[residues_to_keep]
complex_graph['receptor'].side_chain_vecs = complex_graph['receptor'].side_chain_vecs[residues_to_keep]
complex_graph['receptor', 'rec_contact', 'receptor'].edge_index = \
subgraph(residues_to_keep, complex_graph['receptor', 'rec_contact', 'receptor'].edge_index, relabel_nodes=True)[0]
if all_atoms:
complex_graph['atom'].x = complex_graph['atom'].x[atoms_to_keep]
complex_graph['atom'].pos = complex_graph['atom'].pos[atoms_to_keep]
complex_graph['atom', 'atom_contact', 'atom'].edge_index = subgraph(atoms_to_keep, complex_graph['atom', 'atom_contact', 'atom'].edge_index, relabel_nodes=True)[0]
complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index = atom_res_edge_index
#print("cropped", 1-torch.mean(residues_to_keep.float()), 'residues', 1-torch.mean(atoms_to_keep.float()), 'atoms')
|