File size: 31,409 Bytes
9439b9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
from e3nn import o3
import torch
from torch import nn
from torch.nn import functional as F
from torch_cluster import radius, radius_graph
from torch_scatter import scatter, scatter_mean
import numpy as np
from e3nn.nn import BatchNorm

from models.layers import GaussianSmearing, OldAtomEncoder, AtomEncoder
from models.tensor_layers import OldTensorProductConvLayer
from utils import so3, torus
from datasets.process_mols import lig_feature_dims, rec_residue_feature_dims, rec_atom_feature_dims

AGGREGATORS = {"mean": lambda x: torch.mean(x, dim=1),
               "max": lambda x: torch.max(x, dim=1)[0],
               "min": lambda x: torch.min(x, dim=1)[0],
               "std": lambda x: torch.std(x, dim=1)}


class AAOldModel(torch.nn.Module):
    def __init__(self, t_to_sigma, device, timestep_emb_func, in_lig_edge_features=4, sigma_embed_dim=32, sh_lmax=2,
                 ns=16, nv=4, num_conv_layers=2, lig_max_radius=5, rec_max_radius=30, cross_max_distance=250,
                 center_max_distance=30, distance_embed_dim=32, cross_distance_embed_dim=32, no_torsion=False,
                 scale_by_sigma=True, norm_by_sigma=True, use_second_order_repr=False, batch_norm=True,
                 dynamic_max_cross=False, dropout=0.0, smooth_edges=False, odd_parity=False,
                 separate_noise_schedule=False, lm_embedding_type=False, confidence_mode=False,
                 confidence_dropout=0, confidence_no_batchnorm = False,
                 asyncronous_noise_schedule=False, affinity_prediction=False, parallel=1,
                 parallel_aggregators="mean max min std", num_confidence_outputs=1, fixed_center_conv=False,
                 no_aminoacid_identities=False, include_miscellaneous_atoms=False, use_old_atom_encoder=False):
        super(AAOldModel, self).__init__()
        assert (not no_aminoacid_identities) or (lm_embedding_type is None), "no language model emb without identities"
        if parallel > 1: assert affinity_prediction
        self.t_to_sigma = t_to_sigma
        self.in_lig_edge_features = in_lig_edge_features
        sigma_embed_dim *= (3 if separate_noise_schedule else 1)
        self.sigma_embed_dim = sigma_embed_dim
        self.lig_max_radius = lig_max_radius
        self.rec_max_radius = rec_max_radius
        self.cross_max_distance = cross_max_distance
        self.dynamic_max_cross = dynamic_max_cross
        self.center_max_distance = center_max_distance
        self.distance_embed_dim = distance_embed_dim
        self.cross_distance_embed_dim = cross_distance_embed_dim
        self.sh_irreps = o3.Irreps.spherical_harmonics(lmax=sh_lmax)
        self.ns, self.nv = ns, nv
        self.scale_by_sigma = scale_by_sigma
        self.norm_by_sigma = norm_by_sigma
        self.device = device
        self.no_torsion = no_torsion
        self.smooth_edges = smooth_edges
        self.odd_parity = odd_parity
        self.num_conv_layers = num_conv_layers
        self.timestep_emb_func = timestep_emb_func
        self.separate_noise_schedule = separate_noise_schedule
        self.confidence_mode = confidence_mode
        self.num_conv_layers = num_conv_layers
        self.asyncronous_noise_schedule = asyncronous_noise_schedule
        self.affinity_prediction = affinity_prediction
        self.parallel, self.parallel_aggregators = parallel, parallel_aggregators.split(' ')
        self.fixed_center_conv = fixed_center_conv
        self.no_aminoacid_identities = no_aminoacid_identities

        # embedding layers
        atom_encoder_class = OldAtomEncoder if use_old_atom_encoder else AtomEncoder
        self.lig_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=lig_feature_dims, sigma_embed_dim=sigma_embed_dim)
        self.lig_edge_embedding = nn.Sequential(nn.Linear(in_lig_edge_features + sigma_embed_dim + distance_embed_dim, ns),nn.ReLU(),nn.Dropout(dropout),nn.Linear(ns, ns))

        self.rec_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=rec_residue_feature_dims, sigma_embed_dim=sigma_embed_dim, lm_embedding_type=lm_embedding_type)
        self.rec_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))

        self.atom_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=rec_atom_feature_dims, sigma_embed_dim=sigma_embed_dim)
        self.atom_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))

        self.lr_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))
        self.ar_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))
        self.la_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))

        self.lig_distance_expansion = GaussianSmearing(0.0, lig_max_radius, distance_embed_dim)
        self.rec_distance_expansion = GaussianSmearing(0.0, rec_max_radius, distance_embed_dim)
        self.cross_distance_expansion = GaussianSmearing(0.0, cross_max_distance, cross_distance_embed_dim)

        if use_second_order_repr:
            irrep_seq = [
                f'{ns}x0e',
                f'{ns}x0e + {nv}x1o + {nv}x2e',
                f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o',
                f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o + {ns}x0o'
            ]
        else:
            irrep_seq = [
                f'{ns}x0e',
                f'{ns}x0e + {nv}x1o',
                f'{ns}x0e + {nv}x1o + {nv}x1e',
                f'{ns}x0e + {nv}x1o + {nv}x1e + {ns}x0o'
            ]

        # convolutional layers
        conv_layers = []
        for i in range(num_conv_layers):
            in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)]
            out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)]
            parameters = {
                'in_irreps': in_irreps,
                'sh_irreps': self.sh_irreps,
                'out_irreps': out_irreps,
                'n_edge_features': 3 * ns,
                'residual': False,
                'batch_norm': batch_norm,
                'dropout': dropout
            }

            for _ in range(9): # 3 intra & 6 inter per each layer
                conv_layers.append(OldTensorProductConvLayer(**parameters))

        self.conv_layers = nn.ModuleList(conv_layers)

        # confidence and affinity prediction layers
        if self.confidence_mode:
            if self.affinity_prediction:
                if self.parallel > 1:
                    output_confidence_dim = 1 + ns
                else:
                    output_confidence_dim = num_confidence_outputs +1
            else:
                output_confidence_dim = num_confidence_outputs

            self.confidence_predictor = nn.Sequential(
                nn.Linear(2 * self.ns if num_conv_layers >= 3 else self.ns, ns),
                nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
                nn.ReLU(),
                nn.Dropout(confidence_dropout),
                nn.Linear(ns, ns),
                nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
                nn.ReLU(),
                nn.Dropout(confidence_dropout),
                nn.Linear(ns, output_confidence_dim)
            )

            if self.parallel > 1:
                self.affinity_predictor = nn.Sequential(
                    nn.Linear(len(self.parallel_aggregators) * ns, ns),
                    nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
                    nn.ReLU(),
                    nn.Dropout(confidence_dropout),
                    nn.Linear(ns, ns),
                    nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
                    nn.ReLU(),
                    nn.Dropout(confidence_dropout),
                    nn.Linear(ns, 1)
                )

        else:
            # convolution for translational and rotational scores
            self.center_distance_expansion = GaussianSmearing(0.0, center_max_distance, distance_embed_dim)
            self.center_edge_embedding = nn.Sequential(
                nn.Linear(distance_embed_dim + sigma_embed_dim, ns),
                nn.ReLU(),
                nn.Dropout(dropout),
                nn.Linear(ns, ns)
            )

            self.final_conv = OldTensorProductConvLayer(
                in_irreps=self.conv_layers[-1].out_irreps,
                sh_irreps=self.sh_irreps,
                out_irreps=f'2x1o + 2x1e' if not self.odd_parity else '1x1o + 1x1e',
                n_edge_features=2 * ns,
                residual=False,
                dropout=dropout,
                batch_norm=batch_norm
            )

            self.tr_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1))
            self.rot_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1))

            if not no_torsion:
                # convolution for torsional score
                self.final_edge_embedding = nn.Sequential(
                    nn.Linear(distance_embed_dim, ns),
                    nn.ReLU(),
                    nn.Dropout(dropout),
                    nn.Linear(ns, ns)
                )
                self.final_tp_tor = o3.FullTensorProduct(self.sh_irreps, "2e")
                self.tor_bond_conv = OldTensorProductConvLayer(
                    in_irreps=self.conv_layers[-1].out_irreps,
                    sh_irreps=self.final_tp_tor.irreps_out,
                    out_irreps=f'{ns}x0o + {ns}x0e' if not self.odd_parity else f'{ns}x0o',
                    n_edge_features=3 * ns,
                    residual=False,
                    dropout=dropout,
                    batch_norm=batch_norm
                )
                self.tor_final_layer = nn.Sequential(
                    nn.Linear(2 * ns if not self.odd_parity else ns, ns, bias=False),
                    nn.Tanh(),
                    nn.Dropout(dropout),
                    nn.Linear(ns, 1, bias=False)
                )

    def forward(self, data):
        if self.no_aminoacid_identities:
            data['receptor'].x = data['receptor'].x * 0

        if not self.confidence_mode:
            tr_sigma, rot_sigma, tor_sigma = self.t_to_sigma(*[data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']])
        else:
            tr_sigma, rot_sigma, tor_sigma = [data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']]

        # build ligand graph
        lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.build_lig_conv_graph(data)
        lig_node_attr = self.lig_node_embedding(lig_node_attr)
        lig_edge_attr = self.lig_edge_embedding(lig_edge_attr)

        # build receptor graph
        rec_node_attr, rec_edge_index, rec_edge_attr, rec_edge_sh, rec_edge_weight = self.build_rec_conv_graph(data)
        rec_node_attr = self.rec_node_embedding(rec_node_attr)
        rec_edge_attr = self.rec_edge_embedding(rec_edge_attr)

        # build atom graph
        atom_node_attr, atom_edge_index, atom_edge_attr, atom_edge_sh, atom_edge_weight = self.build_atom_conv_graph(data)
        atom_node_attr = self.atom_node_embedding(atom_node_attr)
        atom_edge_attr = self.atom_edge_embedding(atom_edge_attr)

        # build cross graph
        cross_cutoff = (tr_sigma * 3 + 20).unsqueeze(1) if self.dynamic_max_cross else self.cross_max_distance
        lr_edge_index, lr_edge_attr, lr_edge_sh, lr_edge_weight, la_edge_index, la_edge_attr, \
            la_edge_sh, la_edge_weight, ar_edge_index, ar_edge_attr, ar_edge_sh, ar_edge_weight = \
            self.build_cross_conv_graph(data, cross_cutoff)
        lr_edge_attr= self.lr_edge_embedding(lr_edge_attr)
        la_edge_attr = self.la_edge_embedding(la_edge_attr)
        ar_edge_attr = self.ar_edge_embedding(ar_edge_attr)

        for l in range(self.num_conv_layers):
            # LIGAND updates
            lig_edge_attr_ = torch.cat([lig_edge_attr, lig_node_attr[lig_edge_index[0], :self.ns], lig_node_attr[lig_edge_index[1], :self.ns]], -1)
            lig_update = self.conv_layers[9*l](lig_node_attr, lig_edge_index, lig_edge_attr_, lig_edge_sh, edge_weight=lig_edge_weight)

            lr_edge_attr_ = torch.cat([lr_edge_attr, lig_node_attr[lr_edge_index[0], :self.ns], rec_node_attr[lr_edge_index[1], :self.ns]], -1)
            lr_update = self.conv_layers[9*l+1](rec_node_attr, lr_edge_index, lr_edge_attr_, lr_edge_sh,
                                                out_nodes=lig_node_attr.shape[0], edge_weight=lr_edge_weight)

            la_edge_attr_ = torch.cat([la_edge_attr, lig_node_attr[la_edge_index[0], :self.ns], atom_node_attr[la_edge_index[1], :self.ns]], -1)
            la_update = self.conv_layers[9*l+2](atom_node_attr, la_edge_index, la_edge_attr_, la_edge_sh,
                                                out_nodes=lig_node_attr.shape[0], edge_weight=la_edge_weight)

            if l != self.num_conv_layers-1:  # last layer optimisation

                # ATOM UPDATES
                atom_edge_attr_ = torch.cat([atom_edge_attr, atom_node_attr[atom_edge_index[0], :self.ns], atom_node_attr[atom_edge_index[1], :self.ns]], -1)
                atom_update = self.conv_layers[9*l+3](atom_node_attr, atom_edge_index, atom_edge_attr_, atom_edge_sh, edge_weight=atom_edge_weight)

                al_edge_attr_ = torch.cat([la_edge_attr, atom_node_attr[la_edge_index[1], :self.ns], lig_node_attr[la_edge_index[0], :self.ns]], -1)
                al_update = self.conv_layers[9*l+4](lig_node_attr, torch.flip(la_edge_index, dims=[0]), al_edge_attr_,
                                                    la_edge_sh, out_nodes=atom_node_attr.shape[0], edge_weight=la_edge_weight)

                ar_edge_attr_ = torch.cat([ar_edge_attr, atom_node_attr[ar_edge_index[0], :self.ns], rec_node_attr[ar_edge_index[1], :self.ns]],-1)
                ar_update = self.conv_layers[9*l+5](rec_node_attr, ar_edge_index, ar_edge_attr_, ar_edge_sh, out_nodes=atom_node_attr.shape[0], edge_weight=ar_edge_weight)

                # RECEPTOR updates
                rec_edge_attr_ = torch.cat([rec_edge_attr, rec_node_attr[rec_edge_index[0], :self.ns], rec_node_attr[rec_edge_index[1], :self.ns]], -1)
                rec_update = self.conv_layers[9*l+6](rec_node_attr, rec_edge_index, rec_edge_attr_, rec_edge_sh, edge_weight=rec_edge_weight)

                rl_edge_attr_ = torch.cat([lr_edge_attr, rec_node_attr[lr_edge_index[1], :self.ns], lig_node_attr[lr_edge_index[0], :self.ns]], -1)
                rl_update = self.conv_layers[9*l+7](lig_node_attr, torch.flip(lr_edge_index, dims=[0]), rl_edge_attr_,
                                                    lr_edge_sh, out_nodes=rec_node_attr.shape[0], edge_weight=lr_edge_weight)

                ra_edge_attr_ = torch.cat([ar_edge_attr, rec_node_attr[ar_edge_index[1], :self.ns], atom_node_attr[ar_edge_index[0], :self.ns]], -1)
                ra_update = self.conv_layers[9*l+8](atom_node_attr, torch.flip(ar_edge_index, dims=[0]), ra_edge_attr_,
                                                    ar_edge_sh, out_nodes=rec_node_attr.shape[0], edge_weight=ar_edge_weight)

            # padding original features and update features with residual updates
            lig_node_attr = F.pad(lig_node_attr, (0, lig_update.shape[-1] - lig_node_attr.shape[-1]))
            lig_node_attr = lig_node_attr + lig_update + la_update + lr_update

            if l != self.num_conv_layers - 1:  # last layer optimisation
                atom_node_attr = F.pad(atom_node_attr, (0, atom_update.shape[-1] - atom_node_attr.shape[-1]))
                atom_node_attr = atom_node_attr + atom_update + al_update + ar_update
                rec_node_attr = F.pad(rec_node_attr, (0, rec_update.shape[-1] - rec_node_attr.shape[-1]))
                rec_node_attr = rec_node_attr + rec_update + ra_update + rl_update

        # confidence and affinity prediction
        if self.confidence_mode:
            scalar_lig_attr = torch.cat([lig_node_attr[:,:self.ns],lig_node_attr[:,-self.ns:]], dim=1) if self.num_conv_layers >= 3 else lig_node_attr[:,:self.ns]
            confidence = self.confidence_predictor(scatter_mean(scalar_lig_attr, data['ligand'].batch if self.parallel == 1 else data['ligand'].batch_parallel, dim=0)).squeeze(dim=-1)

            if self.parallel > 1:
                confidence, affinity = confidence[:, 0], confidence[:, 1:]
                confidence = confidence.reshape(data.num_graphs, self.parallel)
                affinity = affinity.reshape(data.num_graphs, self.parallel, -1)
                affinity = torch.cat([AGGREGATORS[agg](affinity) for agg in self.parallel_aggregators], dim=-1)
                affinity = self.affinity_predictor(affinity).squeeze(dim=-1)
                confidence = confidence, affinity
            return confidence
        assert self.parallel == 1

        # compute translational and rotational score vectors
        center_edge_index, center_edge_attr, center_edge_sh = self.build_center_conv_graph(data)
        center_edge_attr = self.center_edge_embedding(center_edge_attr)
        if self.fixed_center_conv:
            center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[1], :self.ns]], -1)
        else:
            center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[0], :self.ns]], -1)
        global_pred = self.final_conv(lig_node_attr, center_edge_index, center_edge_attr, center_edge_sh, out_nodes=data.num_graphs)

        tr_pred = global_pred[:, :3] + (global_pred[:, 6:9] if not self.odd_parity else 0)
        rot_pred = global_pred[:, 3:6] + (global_pred[:, 9:] if not self.odd_parity else 0)

        if self.separate_noise_schedule:
            data.graph_sigma_emb = torch.cat([self.timestep_emb_func(data.complex_t[noise_type]) for noise_type in ['tr', 'rot', 'tor']], dim=1)
        elif self.asyncronous_noise_schedule:
            data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['t'])
        else:  # tr rot and tor noise is all the same in this case
            data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr'])

        # adjust the magniture of the score vectors
        tr_norm = torch.linalg.vector_norm(tr_pred, dim=1).unsqueeze(1)
        tr_pred = tr_pred / tr_norm * self.tr_final_layer(torch.cat([tr_norm, data.graph_sigma_emb], dim=1))

        rot_norm = torch.linalg.vector_norm(rot_pred, dim=1).unsqueeze(1)
        rot_pred = rot_pred / rot_norm * self.rot_final_layer(torch.cat([rot_norm, data.graph_sigma_emb], dim=1))

        if self.scale_by_sigma:
            tr_pred = tr_pred / tr_sigma.unsqueeze(1)
            rot_pred = rot_pred * so3.score_norm(rot_sigma.cpu()).unsqueeze(1).to(data['ligand'].x.device)

        if self.no_torsion or data['ligand'].edge_mask.sum() == 0: return tr_pred, rot_pred, torch.empty(0,device=self.device)

        # torsional components
        tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh, tor_edge_weight = self.build_bond_conv_graph(data)
        tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]]
        tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]]

        tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component')
        tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]])

        tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns],
                                   tor_bond_attr[tor_edge_index[0], :self.ns]], -1)
        tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh,
                                  out_nodes=data['ligand'].edge_mask.sum(), reduce='mean', edge_weight=tor_edge_weight)
        tor_pred = self.tor_final_layer(tor_pred).squeeze(1)
        edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask]

        if self.scale_by_sigma:
            tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float()
                                             .to(data['ligand'].x.device))
        return tr_pred, rot_pred, tor_pred

    def get_edge_weight(self, edge_vec, max_norm):
        if self.smooth_edges:
            normalised_norm = torch.clip(edge_vec.norm(dim=-1) * np.pi / max_norm, max=np.pi)
            return 0.5 * (torch.cos(normalised_norm) + 1.0).unsqueeze(-1)
        return 1.0

    def build_lig_conv_graph(self, data):
        # build the graph between ligand atoms
        if self.separate_noise_schedule:
            data['ligand'].node_sigma_emb = torch.cat(
                [self.timestep_emb_func(data['ligand'].node_t[noise_type]) for noise_type in ['tr', 'rot', 'tor']],
                dim=1)
        elif self.asyncronous_noise_schedule:
            data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['t'])
        else:
            data['ligand'].node_sigma_emb = self.timestep_emb_func(
                data['ligand'].node_t['tr'])  # tr rot and tor noise is all the same

        if self.parallel == 1:
            radius_edges = radius_graph(data['ligand'].pos, self.lig_max_radius, data['ligand'].batch)
        else:
            batches = torch.zeros(data.num_graphs, device=data['ligand'].x.device).long()
            batches = batches.index_add(0, data['ligand'].batch, torch.ones(len(data['ligand'].batch), device=data['ligand'].x.device).long())
            outer_batches = data.num_graphs
            b = [torch.ones(batches[i].item()//self.parallel, device=data['ligand'].x.device).long() * (self.parallel * i + j)
                 for i in range(outer_batches) for j in range(self.parallel)]
            data['ligand'].batch_parallel = torch.cat(b)
            radius_edges = radius_graph(data['ligand'].pos, self.lig_max_radius, data['ligand'].batch_parallel)
        edge_index = torch.cat([data['ligand', 'ligand'].edge_index, radius_edges], 1).long()
        edge_attr = torch.cat([
            data['ligand', 'ligand'].edge_attr,
            torch.zeros(radius_edges.shape[-1], self.in_lig_edge_features, device=data['ligand'].x.device)
        ], 0)

        edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[0].long()]
        edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1)
        node_attr = torch.cat([data['ligand'].x, data['ligand'].node_sigma_emb], 1)

        src, dst = edge_index
        edge_vec = data['ligand'].pos[dst.long()] - data['ligand'].pos[src.long()]
        edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1))

        edge_attr = torch.cat([edge_attr, edge_length_emb], 1)
        edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
        edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius)

        return node_attr, edge_index, edge_attr, edge_sh, edge_weight

    def build_rec_conv_graph(self, data):
        # build the graph between receptor residues
        if self.separate_noise_schedule:
            data['receptor'].node_sigma_emb = torch.cat(
                [self.timestep_emb_func(data['receptor'].node_t[noise_type]) for noise_type in ['tr', 'rot', 'tor']],
                dim=1)
        elif self.asyncronous_noise_schedule:
            data['receptor'].node_sigma_emb = self.timestep_emb_func(data['receptor'].node_t['t'])
        else:
            data['receptor'].node_sigma_emb = self.timestep_emb_func(
                data['receptor'].node_t['tr'])  # tr rot and tor noise is all the same
        node_attr = torch.cat([data['receptor'].x, data['receptor'].node_sigma_emb], 1)

        # this assumes the edges were already created in preprocessing since protein's structure is fixed
        edge_index = data['receptor', 'receptor'].edge_index
        src, dst = edge_index
        edge_vec = data['receptor'].pos[dst.long()] - data['receptor'].pos[src.long()]
        #assert torch.all(edge_vec.norm(dim=-1) < self.rec_max_radius)

        edge_length_emb = self.rec_distance_expansion(edge_vec.norm(dim=-1))
        edge_sigma_emb = data['receptor'].node_sigma_emb[edge_index[0].long()]
        edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1)
        edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
        edge_weight = self.get_edge_weight(edge_vec, self.rec_max_radius)

        return node_attr, edge_index, edge_attr, edge_sh, edge_weight

    def build_atom_conv_graph(self, data):
        # build the graph between receptor atoms
        if self.separate_noise_schedule:
            data['atom'].node_sigma_emb = torch.cat([self.timestep_emb_func(data['atom'].node_t[noise_type]) for noise_type in ['tr', 'rot', 'tor']],dim=1)
        elif self.asyncronous_noise_schedule:
            data['atom'].node_sigma_emb = self.timestep_emb_func(data['atom'].node_t['t'])
        else:
            data['atom'].node_sigma_emb = self.timestep_emb_func(data['atom'].node_t['tr'])  # tr rot and tor noise is all the same
        node_attr = torch.cat([data['atom'].x, data['atom'].node_sigma_emb], 1)

        # this assumes the edges were already created in preprocessing since protein's structure is fixed
        edge_index = data['atom', 'atom'].edge_index
        src, dst = edge_index
        edge_vec = data['atom'].pos[dst.long()] - data['atom'].pos[src.long()]

        edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1))
        edge_sigma_emb = data['atom'].node_sigma_emb[edge_index[0].long()]
        edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1)
        edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
        edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius)

        return node_attr, edge_index, edge_attr, edge_sh, edge_weight

    def build_cross_conv_graph(self, data, lr_cross_distance_cutoff):
        # build the cross edges between ligan atoms, receptor residues and receptor atoms

        # LIGAND to RECEPTOR
        if torch.is_tensor(lr_cross_distance_cutoff):
            # different cutoff for every graph
            lr_edge_index = radius(data['receptor'].pos / lr_cross_distance_cutoff[data['receptor'].batch],
                                data['ligand'].pos / lr_cross_distance_cutoff[data['ligand'].batch], 1,
                                data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
        else:
            lr_edge_index = radius(data['receptor'].pos, data['ligand'].pos, lr_cross_distance_cutoff,
                            data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)

        lr_edge_vec = data['receptor'].pos[lr_edge_index[1].long()] - data['ligand'].pos[lr_edge_index[0].long()]
        lr_edge_length_emb = self.cross_distance_expansion(lr_edge_vec.norm(dim=-1))
        lr_edge_sigma_emb = data['ligand'].node_sigma_emb[lr_edge_index[0].long()]
        lr_edge_attr = torch.cat([lr_edge_sigma_emb, lr_edge_length_emb], 1)
        lr_edge_sh = o3.spherical_harmonics(self.sh_irreps, lr_edge_vec, normalize=True, normalization='component')

        cutoff_d = lr_cross_distance_cutoff[data['ligand'].batch[lr_edge_index[0]]].squeeze() \
            if torch.is_tensor(lr_cross_distance_cutoff) else lr_cross_distance_cutoff
        lr_edge_weight = self.get_edge_weight(lr_edge_vec, cutoff_d)

        # LIGAND to ATOM
        la_edge_index = radius(data['atom'].pos, data['ligand'].pos, self.lig_max_radius,
                               data['atom'].batch, data['ligand'].batch, max_num_neighbors=10000)

        la_edge_vec = data['atom'].pos[la_edge_index[1].long()] - data['ligand'].pos[la_edge_index[0].long()]
        la_edge_length_emb = self.cross_distance_expansion(la_edge_vec.norm(dim=-1))
        la_edge_sigma_emb = data['ligand'].node_sigma_emb[la_edge_index[0].long()]
        la_edge_attr = torch.cat([la_edge_sigma_emb, la_edge_length_emb], 1)
        la_edge_sh = o3.spherical_harmonics(self.sh_irreps, la_edge_vec, normalize=True, normalization='component')
        la_edge_weight = self.get_edge_weight(la_edge_vec, self.lig_max_radius)

        # ATOM to RECEPTOR
        ar_edge_index = data['atom', 'receptor'].edge_index
        ar_edge_vec = data['receptor'].pos[ar_edge_index[1].long()] - data['atom'].pos[ar_edge_index[0].long()]
        ar_edge_length_emb = self.rec_distance_expansion(ar_edge_vec.norm(dim=-1))
        ar_edge_sigma_emb = data['atom'].node_sigma_emb[ar_edge_index[0].long()]
        ar_edge_attr = torch.cat([ar_edge_sigma_emb, ar_edge_length_emb], 1)
        ar_edge_sh = o3.spherical_harmonics(self.sh_irreps, ar_edge_vec, normalize=True, normalization='component')
        ar_edge_weight = 1

        return lr_edge_index, lr_edge_attr, lr_edge_sh, lr_edge_weight, la_edge_index, la_edge_attr, \
               la_edge_sh, la_edge_weight, ar_edge_index, ar_edge_attr, ar_edge_sh, ar_edge_weight

    def build_center_conv_graph(self, data):
        # build the filter for the convolution of the center with the ligand atoms
        # for translational and rotational score
        edge_index = torch.cat([data['ligand'].batch.unsqueeze(0), torch.arange(len(data['ligand'].batch)).to(data['ligand'].x.device).unsqueeze(0)], dim=0)

        center_pos, count = torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device), torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device)
        center_pos.index_add_(0, index=data['ligand'].batch, source=data['ligand'].pos)
        center_pos = center_pos / torch.bincount(data['ligand'].batch).unsqueeze(1)

        edge_vec = data['ligand'].pos[edge_index[1]] - center_pos[edge_index[0]]
        edge_attr = self.center_distance_expansion(edge_vec.norm(dim=-1))
        edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[1].long()]
        edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1)
        edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
        return edge_index, edge_attr, edge_sh

    def build_bond_conv_graph(self, data):
        # build graph for the pseudotorque layer
        bonds = data['ligand', 'ligand'].edge_index[:, data['ligand'].edge_mask].long()
        bond_pos = (data['ligand'].pos[bonds[0]] + data['ligand'].pos[bonds[1]]) / 2
        bond_batch = data['ligand'].batch[bonds[0]]
        edge_index = radius(data['ligand'].pos, bond_pos, self.lig_max_radius, batch_x=data['ligand'].batch, batch_y=bond_batch)

        edge_vec = data['ligand'].pos[edge_index[1]] - bond_pos[edge_index[0]]
        edge_attr = self.lig_distance_expansion(edge_vec.norm(dim=-1))

        edge_attr = self.final_edge_embedding(edge_attr)
        edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
        edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius)

        return bonds, edge_index, edge_attr, edge_sh, edge_weight