File size: 23,339 Bytes
c17cba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import copy
import warnings
from pathlib import Path

import numpy as np
import torch
from Bio.PDB import PDBParser
from rdkit import Chem
from rdkit.Chem.rdchem import BondType as BT
from rdkit.Chem import AllChem, GetPeriodicTable, RemoveHs
from rdkit.Geometry import Point3D
from torch import cdist
from torch_cluster import knn_graph
import prody as pr

import torch.nn.functional as F

from datasets.conformer_matching import get_torsion_angles, optimize_rotatable_bonds
from datasets.constants import aa_short2long, atom_order, three_to_one
from datasets.parse_chi import get_chi_angles, get_coords, aa_idx2aa_short, get_onehot_sequence
from utils.torsion import get_transformation_mask
from utils.logging_utils import get_logger

logger = get_logger()

periodic_table = GetPeriodicTable()
allowable_features = {
    'possible_atomic_num_list': list(range(1, 119)) + ['misc'],
    'possible_chirality_list': [
        'CHI_UNSPECIFIED',
        'CHI_TETRAHEDRAL_CW',
        'CHI_TETRAHEDRAL_CCW',
        'CHI_OTHER'
    ],
    'possible_degree_list': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 'misc'],
    'possible_numring_list': [0, 1, 2, 3, 4, 5, 6, 'misc'],
    'possible_implicit_valence_list': [0, 1, 2, 3, 4, 5, 6, 'misc'],
    'possible_formal_charge_list': [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 'misc'],
    'possible_numH_list': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
    'possible_number_radical_e_list': [0, 1, 2, 3, 4, 'misc'],
    'possible_hybridization_list': [
        'SP', 'SP2', 'SP3', 'SP3D', 'SP3D2', 'misc'
    ],
    'possible_is_aromatic_list': [False, True],
    'possible_is_in_ring3_list': [False, True],
    'possible_is_in_ring4_list': [False, True],
    'possible_is_in_ring5_list': [False, True],
    'possible_is_in_ring6_list': [False, True],
    'possible_is_in_ring7_list': [False, True],
    'possible_is_in_ring8_list': [False, True],
    'possible_amino_acids': ['ALA', 'ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'GLY', 'HIS', 'ILE', 'LEU', 'LYS', 'MET',
                             'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL', 'HIP', 'HIE', 'TPO', 'HID', 'LEV', 'MEU',
                             'PTR', 'GLV', 'CYT', 'SEP', 'HIZ', 'CYM', 'GLM', 'ASQ', 'TYS', 'CYX', 'GLZ', 'misc'],
    'possible_atom_type_2': ['C*', 'CA', 'CB', 'CD', 'CE', 'CG', 'CH', 'CZ', 'N*', 'ND', 'NE', 'NH', 'NZ', 'O*', 'OD',
                             'OE', 'OG', 'OH', 'OX', 'S*', 'SD', 'SG', 'misc'],
    'possible_atom_type_3': ['C', 'CA', 'CB', 'CD', 'CD1', 'CD2', 'CE', 'CE1', 'CE2', 'CE3', 'CG', 'CG1', 'CG2', 'CH2',
                             'CZ', 'CZ2', 'CZ3', 'N', 'ND1', 'ND2', 'NE', 'NE1', 'NE2', 'NH1', 'NH2', 'NZ', 'O', 'OD1',
                             'OD2', 'OE1', 'OE2', 'OG', 'OG1', 'OH', 'OXT', 'SD', 'SG', 'misc'],
}
bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}

lig_feature_dims = (list(map(len, [
    allowable_features['possible_atomic_num_list'],
    allowable_features['possible_chirality_list'],
    allowable_features['possible_degree_list'],
    allowable_features['possible_formal_charge_list'],
    allowable_features['possible_implicit_valence_list'],
    allowable_features['possible_numH_list'],
    allowable_features['possible_number_radical_e_list'],
    allowable_features['possible_hybridization_list'],
    allowable_features['possible_is_aromatic_list'],
    allowable_features['possible_numring_list'],
    allowable_features['possible_is_in_ring3_list'],
    allowable_features['possible_is_in_ring4_list'],
    allowable_features['possible_is_in_ring5_list'],
    allowable_features['possible_is_in_ring6_list'],
    allowable_features['possible_is_in_ring7_list'],
    allowable_features['possible_is_in_ring8_list'],
])), 0)  # number of scalar features

rec_atom_feature_dims = (list(map(len, [
    allowable_features['possible_amino_acids'],
    allowable_features['possible_atomic_num_list'],
    allowable_features['possible_atom_type_2'],
    allowable_features['possible_atom_type_3'],
])), 0)

rec_residue_feature_dims = (list(map(len, [
    allowable_features['possible_amino_acids']
])), 0)


def lig_atom_featurizer(mol):
    ringinfo = mol.GetRingInfo()
    atom_features_list = []
    for idx, atom in enumerate(mol.GetAtoms()):
        chiral_tag = str(atom.GetChiralTag())
        if chiral_tag  in ['CHI_SQUAREPLANAR', 'CHI_TRIGONALBIPYRAMIDAL', 'CHI_OCTAHEDRAL']:
            chiral_tag = 'CHI_OTHER'

        atom_features_list.append([
            safe_index(allowable_features['possible_atomic_num_list'], atom.GetAtomicNum()),
            allowable_features['possible_chirality_list'].index(str(chiral_tag)),
            safe_index(allowable_features['possible_degree_list'], atom.GetTotalDegree()),
            safe_index(allowable_features['possible_formal_charge_list'], atom.GetFormalCharge()),
            safe_index(allowable_features['possible_implicit_valence_list'], atom.GetImplicitValence()),
            safe_index(allowable_features['possible_numH_list'], atom.GetTotalNumHs()),
            safe_index(allowable_features['possible_number_radical_e_list'], atom.GetNumRadicalElectrons()),
            safe_index(allowable_features['possible_hybridization_list'], str(atom.GetHybridization())),
            allowable_features['possible_is_aromatic_list'].index(atom.GetIsAromatic()),
            safe_index(allowable_features['possible_numring_list'], ringinfo.NumAtomRings(idx)),
            allowable_features['possible_is_in_ring3_list'].index(ringinfo.IsAtomInRingOfSize(idx, 3)),
            allowable_features['possible_is_in_ring4_list'].index(ringinfo.IsAtomInRingOfSize(idx, 4)),
            allowable_features['possible_is_in_ring5_list'].index(ringinfo.IsAtomInRingOfSize(idx, 5)),
            allowable_features['possible_is_in_ring6_list'].index(ringinfo.IsAtomInRingOfSize(idx, 6)),
            allowable_features['possible_is_in_ring7_list'].index(ringinfo.IsAtomInRingOfSize(idx, 7)),
            allowable_features['possible_is_in_ring8_list'].index(ringinfo.IsAtomInRingOfSize(idx, 8)),
            #g_charge if not np.isnan(g_charge) and not np.isinf(g_charge) else 0.
        ])
    return torch.tensor(atom_features_list)


def safe_index(l, e):
    """ Return index of element e in list l. If e is not present, return the last index """
    try:
        return l.index(e)
    except:
        return len(l) - 1


def moad_extract_receptor_structure(path, complex_graph, neighbor_cutoff=20, max_neighbors=None, sequences_to_embeddings=None,
                                    knn_only_graph=False, lm_embeddings=None, all_atoms=False, atom_cutoff=None, atom_max_neighbors=None):
    # load the entire pdb file
    pdb = pr.parsePDB(str(path))
    seq = pdb.ca.getSequence()
    coords = get_coords(pdb)
    one_hot = get_onehot_sequence(seq)

    chain_ids = np.zeros(len(one_hot))
    res_chain_ids = pdb.ca.getChids()
    res_seg_ids = pdb.ca.getSegnames()
    res_chain_ids = np.asarray([s + c for s, c in zip(res_seg_ids, res_chain_ids)])
    ids = np.unique(res_chain_ids)
    sequences = []
    lm_embeddings = lm_embeddings if sequences_to_embeddings is None else []

    for i, id in enumerate(ids):
        chain_ids[res_chain_ids == id] = i

        s = np.argmax(one_hot[res_chain_ids == id], axis=1)
        s = ''.join([aa_idx2aa_short[aa_idx] for aa_idx in s])
        sequences.append(s)
        if sequences_to_embeddings is not None:
            lm_embeddings.append(sequences_to_embeddings[s])

    complex_graph['receptor'].sequence = sequences
    complex_graph['receptor'].chain_ids = torch.from_numpy(np.asarray(chain_ids)).long()

    new_extract_receptor_structure(seq, coords, complex_graph, neighbor_cutoff=neighbor_cutoff, max_neighbors=max_neighbors,
                                   lm_embeddings=lm_embeddings, knn_only_graph=knn_only_graph, all_atoms=all_atoms,
                                   atom_cutoff=atom_cutoff, atom_max_neighbors=atom_max_neighbors)


def new_extract_receptor_structure(seq, all_coords, complex_graph, neighbor_cutoff=20, max_neighbors=None, lm_embeddings=None,
                                   knn_only_graph=False, all_atoms=False, atom_cutoff=None, atom_max_neighbors=None):
    chi_angles, one_hot = get_chi_angles(all_coords, seq, return_onehot=True)
    n_rel_pos, c_rel_pos = all_coords[:, 0, :] - all_coords[:, 1, :], all_coords[:, 2, :] - all_coords[:, 1, :]
    side_chain_vecs = torch.from_numpy(np.concatenate([chi_angles / 360, n_rel_pos, c_rel_pos], axis=1))

    # Build the k-NN graph
    coords = torch.tensor(all_coords[:, 1, :], dtype=torch.float)
    if len(coords) > 3000:
        raise ValueError(f'The receptor is too large {len(coords)}')
    if knn_only_graph:
        edge_index = knn_graph(coords, k=max_neighbors if max_neighbors else 32)
    else:
        distances = cdist(coords, coords)
        src_list = []
        dst_list = []
        for i in range(len(coords)):
            dst = list(np.where(distances[i, :] < neighbor_cutoff)[0])
            dst.remove(i)
            max_neighbors = max_neighbors if max_neighbors else 1000
            if max_neighbors != None and len(dst) > max_neighbors:
                dst = list(np.argsort(distances[i, :]))[1: max_neighbors + 1]
            if len(dst) == 0:
                dst = list(np.argsort(distances[i, :]))[1:2]  # choose second because first is i itself
                print(
                    f'The cutoff {neighbor_cutoff} was too small for one atom such that it had no neighbors. '
                    f'So we connected it to the closest other atom')
            assert i not in dst
            src = [i] * len(dst)
            src_list.extend(src)
            dst_list.extend(dst)
        edge_index = torch.from_numpy(np.asarray([dst_list, src_list]))

    res_names_list = [aa_short2long[seq[i]] if seq[i] in aa_short2long else 'misc' for i in range(len(seq))]
    feature_list = [[safe_index(allowable_features['possible_amino_acids'], res)] for res in res_names_list]
    node_feat = torch.tensor(feature_list, dtype=torch.float32)

    lm_embeddings = torch.tensor(np.concatenate(lm_embeddings, axis=0)) if lm_embeddings is not None else None
    complex_graph['receptor'].x = torch.cat([node_feat, lm_embeddings], axis=1) if lm_embeddings is not None else node_feat
    complex_graph['receptor'].pos = coords
    complex_graph['receptor'].side_chain_vecs = side_chain_vecs.float()
    complex_graph['receptor', 'rec_contact', 'receptor'].edge_index = edge_index
    if all_atoms:
        atom_coords = all_coords.reshape(-1, 3)
        atom_coords = torch.from_numpy(atom_coords[~np.any(np.isnan(atom_coords), axis=1)]).float()

        if knn_only_graph:
            atoms_edge_index = knn_graph(atom_coords, k=atom_max_neighbors if atom_max_neighbors else 1000)
        else:
            atoms_distances = cdist(atom_coords, atom_coords)
            atom_src_list = []
            atom_dst_list = []
            for i in range(len(atom_coords)):
                dst = list(np.where(atoms_distances[i, :] < atom_cutoff)[0])
                dst.remove(i)
                max_neighbors = atom_max_neighbors if atom_max_neighbors else 1000
                if max_neighbors != None and len(dst) > max_neighbors:
                    dst = list(np.argsort(atoms_distances[i, :]))[1: max_neighbors + 1]
                if len(dst) == 0:
                    dst = list(np.argsort(atoms_distances[i, :]))[1:2]  # choose second because first is i itself
                    print(
                        f'The atom_cutoff {atom_cutoff} was too small for one atom such that it had no neighbors. '
                        f'So we connected it to the closest other atom')
                assert i not in dst
                src = [i] * len(dst)
                atom_src_list.extend(src)
                atom_dst_list.extend(dst)
            atoms_edge_index = torch.from_numpy(np.asarray([atom_dst_list, atom_src_list]))
        
        feats = [get_moad_atom_feats(res, all_coords[i]) for i, res in enumerate(seq)]
        atom_feat = torch.from_numpy(np.concatenate(feats, axis=0)).float()
        c_alpha_idx = np.concatenate([np.zeros(len(f)) + i for i, f in enumerate(feats)])
        np_array = np.stack([np.arange(len(atom_feat)), c_alpha_idx])
        atom_res_edge_index = torch.from_numpy(np_array).long()
        complex_graph['atom'].x = atom_feat
        complex_graph['atom'].pos = atom_coords
        assert len(complex_graph['atom'].x) == len(complex_graph['atom'].pos)
        complex_graph['atom', 'atom_contact', 'atom'].edge_index = atoms_edge_index
        complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index = atom_res_edge_index

    return


def get_moad_atom_feats(res, coords):
    feats = []
    res_long = aa_short2long[res]
    res_order = atom_order[res]
    for i, c in enumerate(coords):
        if np.any(np.isnan(c)):
            continue
        atom_feats = []
        if res == '-':
            atom_feats = [safe_index(allowable_features['possible_amino_acids'], 'misc'),
                     safe_index(allowable_features['possible_atomic_num_list'], 'misc'),
                     safe_index(allowable_features['possible_atom_type_2'], 'misc'),
                     safe_index(allowable_features['possible_atom_type_3'], 'misc')]
        else:
            atom_feats.append(safe_index(allowable_features['possible_amino_acids'], res_long))
            if i >= len(res_order):
                atom_feats.extend([safe_index(allowable_features['possible_atomic_num_list'], 'misc'),
                                   safe_index(allowable_features['possible_atom_type_2'], 'misc'),
                                   safe_index(allowable_features['possible_atom_type_3'], 'misc')])
            else:
                atom_name = res_order[i]
                try:
                    atomic_num = periodic_table.GetAtomicNumber(atom_name[:1])
                except:
                    print("element", res_order[i][:1], 'not found')
                    atomic_num = -1

                atom_feats.extend([safe_index(allowable_features['possible_atomic_num_list'], atomic_num),
                                   safe_index(allowable_features['possible_atom_type_2'], (atom_name + '*')[:2]),
                                   safe_index(allowable_features['possible_atom_type_3'], atom_name)])
        feats.append(atom_feats)
    feats = np.asarray(feats)
    return feats


def get_lig_graph(mol, complex_graph):
    atom_feats = lig_atom_featurizer(mol)

    row, col, edge_type = [], [], []
    for bond in mol.GetBonds():
        start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
        row += [start, end]
        col += [end, start]
        edge_type += 2 * [bonds[bond.GetBondType()]] if bond.GetBondType() != BT.UNSPECIFIED else [0, 0]

    edge_index = torch.tensor([row, col], dtype=torch.long)
    edge_type = torch.tensor(edge_type, dtype=torch.long)
    edge_attr = F.one_hot(edge_type, num_classes=len(bonds)).to(torch.float)

    complex_graph['ligand'].x = atom_feats
    complex_graph['ligand', 'lig_bond', 'ligand'].edge_index = edge_index
    complex_graph['ligand', 'lig_bond', 'ligand'].edge_attr = edge_attr

    if mol.GetNumConformers() > 0:
        lig_coords = torch.from_numpy(mol.GetConformer().GetPositions()).float()
        complex_graph['ligand'].pos = lig_coords

    return


def generate_conformer(mol):
    ps = AllChem.ETKDGv2()
    failures, id = 0, -1
    while failures < 3 and id == -1:
        if failures > 0:
            logger.debug(f'rdkit coords could not be generated. trying again {failures}.')
        id = AllChem.EmbedMolecule(mol, ps)
        failures += 1
    if id == -1:
        logger.info('rdkit coords could not be generated without using random coords. using random coords now.')
        ps.useRandomCoords = True
        AllChem.EmbedMolecule(mol, ps)
        AllChem.MMFFOptimizeMolecule(mol, confId=0)
        return True
    #else:
    #    AllChem.MMFFOptimizeMolecule(mol, confId=0)
    return False


def get_lig_graph_with_matching(mol_, complex_graph, popsize, maxiter, matching, keep_original, num_conformers, remove_hs, tries=10, skip_matching=False):
    if matching:
        mol_maybe_noh = copy.deepcopy(mol_)
        if remove_hs:
            mol_maybe_noh = RemoveHs(mol_maybe_noh, sanitize=True)
            mol_maybe_noh = AllChem.RemoveAllHs(mol_maybe_noh)
        if keep_original:
            positions = []
            for conf in mol_maybe_noh.GetConformers():
                positions.append(conf.GetPositions())
            complex_graph['ligand'].orig_pos = np.asarray(positions) if len(positions) > 1 else positions[0]

        # rotatable_bonds = get_torsion_angles(mol_maybe_noh)
        _tmp = copy.deepcopy(mol_)
        if remove_hs:
            _tmp = RemoveHs(_tmp, sanitize=True)
        _tmp = AllChem.RemoveAllHs(_tmp)
        rotatable_bonds = get_torsion_angles(_tmp)

        for i in range(num_conformers):
            mols, rmsds = [], []
            for _ in range(tries):
                mol_rdkit = copy.deepcopy(mol_)

                mol_rdkit.RemoveAllConformers()
                mol_rdkit = AllChem.AddHs(mol_rdkit)
                generate_conformer(mol_rdkit)
                if remove_hs:
                    mol_rdkit = RemoveHs(mol_rdkit, sanitize=True)
                mol_rdkit = AllChem.RemoveAllHs(mol_rdkit)
                mol = AllChem.RemoveAllHs(copy.deepcopy(mol_maybe_noh))
                if rotatable_bonds and not skip_matching:
                    optimize_rotatable_bonds(mol_rdkit, mol, rotatable_bonds, popsize=popsize, maxiter=maxiter)
                mol.AddConformer(mol_rdkit.GetConformer())
                rms_list = []
                AllChem.AlignMolConformers(mol, RMSlist=rms_list)
                mol_rdkit.RemoveAllConformers()
                mol_rdkit.AddConformer(mol.GetConformers()[1])
                mols.append(mol_rdkit)
                rmsds.append(rms_list[0])

            # select molecule with lowest rmsd
            #print("mean std min max", np.mean(rmsds), np.std(rmsds), np.min(rmsds), np.max(rmsds))
            mol_rdkit = mols[np.argmin(rmsds)]
            if i == 0:
                complex_graph.rmsd_matching = min(rmsds)
                get_lig_graph(mol_rdkit, complex_graph)
            else:
                if torch.is_tensor(complex_graph['ligand'].pos):
                    complex_graph['ligand'].pos = [complex_graph['ligand'].pos]
                complex_graph['ligand'].pos.append(torch.from_numpy(mol_rdkit.GetConformer().GetPositions()).float())

    else:  # no matching
        complex_graph.rmsd_matching = 0
        if remove_hs: mol_ = RemoveHs(mol_)
        get_lig_graph(mol_, complex_graph)

    edge_mask, mask_rotate = get_transformation_mask(complex_graph)
    complex_graph['ligand'].edge_mask = torch.tensor(edge_mask)
    complex_graph['ligand'].mask_rotate = mask_rotate

    return


def get_rec_misc_atom_feat(bio_atom=None, atom_name=None, element=None, get_misc_features=False):
    if get_misc_features:
        return [safe_index(allowable_features['possible_amino_acids'], 'misc'),
                 safe_index(allowable_features['possible_atomic_num_list'], 'misc'),
                 safe_index(allowable_features['possible_atom_type_2'], 'misc'),
                 safe_index(allowable_features['possible_atom_type_3'], 'misc')]
    if atom_name is not None:
        atom_name = atom_name
    else:
        atom_name = bio_atom.name
    if element is not None:
        element = element
    else:
        element = bio_atom.element
    if element == 'CD':
        element = 'C'
    assert not element == ''
    try:
        atomic_num = periodic_table.GetAtomicNumber(element.lower().capitalize())
    except:
        atomic_num = -1

    atom_feat = [safe_index(allowable_features['possible_amino_acids'], bio_atom.get_parent().get_resname()),
                 safe_index(allowable_features['possible_atomic_num_list'], atomic_num),
                 safe_index(allowable_features['possible_atom_type_2'], (atom_name + '*')[:2]),
                 safe_index(allowable_features['possible_atom_type_3'], atom_name)]
    return atom_feat


def write_mol_with_coords(mol, new_coords, path):
    w = Chem.SDWriter(path)
    conf = mol.GetConformer()
    for i in range(mol.GetNumAtoms()):
        x,y,z = new_coords.astype(np.double)[i]
        conf.SetAtomPosition(i,Point3D(x,y,z))
    w.write(mol)
    w.close()


def create_mol_with_coords(mol, new_coords, path=None):
    conf = mol.GetConformer()
    for i in range(mol.GetNumAtoms()):
        x, y, z = new_coords[i]
        conf.SetAtomPosition(i, Point3D(float(x), float(y), float(z)))
    if path:
        w = Chem.SDWriter(path)
        w.write(mol)
        w.close()
    return mol


def read_molecule(ligand_description, sanitize=False, calc_charges=False, remove_hs=False, remove_confs=False):
    mol = None
    # Check if ligand_description is a path to a file
    if Path(ligand_description).is_absolute() or len(Path(ligand_description).parts) > 1:
        path = Path(ligand_description)
        if path.is_file():
            match path.suffix:
                case '.mol':
                    mol =  Chem.MolFromMolFile(str(path), sanitize=False, removeHs=True)
                case '.mol2':
                    mol = Chem.MolFromMol2File(str(path), sanitize=False, removeHs=False)
                case '.sdf':
                    supplier = Chem.SDMolSupplier(str(path), sanitize=False, removeHs=False)
                    mol = supplier[0]
                case '.pdbqt':
                    with open(path) as file:
                        pdbqt_data = file.readlines()
                    pdb_block = ''
                    for line in pdbqt_data:
                        pdb_block += '{}\n'.format(line[:66])
                    mol = Chem.MolFromPDBBlock(pdb_block, sanitize=False, removeHs=False)
                case '.pdb':
                    mol = Chem.MolFromPDBFile(str(path), sanitize=False, removeHs=False)
                case _:
                    logger.warning(f'Expect the format of the molecule file to be '
                                     f'one of .mol2, .sdf, .pdbqt and .pdb, got {ligand_description}')
        else:
            raise FileNotFoundError(f'File {ligand_description} not found.')
    else:
        mol = Chem.MolFromSmiles(ligand_description)
        # No need to remove conformers if the molecule is not read from a file
        remove_confs = False

    if mol is not None:
        try:
            if sanitize or calc_charges:
                Chem.SanitizeMol(mol)

            if calc_charges:
                # Compute Gasteiger charges on the molecule.
                try:
                    AllChem.ComputeGasteigerCharges(mol)
                except:
                    warnings.warn('Unable to compute charges for the molecule.')

            if remove_hs:
                mol = Chem.RemoveHs(mol, sanitize=sanitize)

            if remove_confs:
                mol.RemoveAllConformers()

        except Exception as e:
            # Print stacktrace
            import traceback
            msg = traceback.format_exc()
            logger.warning(f"Failed to process molecule: {ligand_description}\n{msg}")
            return None

    return mol