Spaces:
Sleeping
Sleeping
File size: 58,871 Bytes
9439b9b c17cba8 9439b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 |
import logging
import shutil
import sys
import tempfile
from argparse import ArgumentParser, Namespace, FileType
import copy
import itertools
import os
import subprocess
from datetime import datetime
from pathlib import Path
from functools import partial, cache
import warnings
import yaml
from Bio.PDB import PDBParser
from prody import parsePDB, parsePQR
from sklearn.cluster import DBSCAN
from openbabel import openbabel as ob
from src import const
from src.datasets import (
collate_with_fragment_without_pocket_edges, collate_with_fragment_edges, get_dataloader, get_one_hot, parse_molecule
)
from src.lightning import DDPM
from src.linker_size_lightning import SizeClassifier
from src.utils import set_deterministic, FoundNaNException
# Ignore pandas deprecation warning around pyarrow
warnings.filterwarnings("ignore", category=DeprecationWarning,
message="(?s).*Pyarrow will become a required dependency of pandas.*")
import numpy as np
import pandas as pd
from pandarallel import pandarallel
import torch
from torch_geometric.loader import DataLoader
from Bio import SeqIO
from rdkit import RDLogger, Chem
from rdkit.Chem import RemoveAllHs, PandasTools
# TODO imports are a little odd, utils seems to shadow things
from utils.logging_utils import configure_logger, get_logger
from datasets.process_mols import create_mol_with_coords, read_molecule
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule
from utils.inference_utils import InferenceDataset
from utils.sampling import randomize_position, sampling
from utils.utils import get_model
from tqdm import tqdm
configure_logger()
log = get_logger()
RDLogger.DisableLog('rdApp.*')
ob.obErrorLog.SetOutputLevel(0)
warnings.filterwarnings("ignore", category=UserWarning,
message="The TorchScript type system doesn't support instance-level annotations on"
" empty non-base types in `__init__`")
# Prody logging is very verbose by default
prody_logger = logging.getLogger(".prody")
prody_logger.setLevel(logging.ERROR)
# Pandarallel initialization
nb_workers = os.cpu_count()
progress_bar = False
if hasattr(sys, 'gettrace') and sys.gettrace() is not None: # Debug mode
nb_workers = 1
progress_bar = True
pandarallel.initialize(nb_workers=nb_workers, progress_bar=progress_bar)
def read_fragment_library(file_path):
file_path = Path(file_path)
if file_path.suffix == '.csv':
df = pd.read_csv(file_path)
PandasTools.AddMoleculeColumnToFrame(df, smilesCol='X1', molCol='mol')
elif file_path.suffix == '.sdf':
df = PandasTools.LoadSDF(file_path, smilesName='X1', molColName='mol')
id_cols = [col for col in df.columns if 'ID' in col]
if id_cols:
df['ID1'] = df[id_cols[0]]
else:
raise ValueError(f"Unsupported file format: {file_path.suffix}")
if 'ID1' not in df.columns:
df['ID1'] = None
# Use InChiKey as ID1 if None
df.loc[df['ID1'].isna(), 'ID1'] = df.loc[
df['ID1'].isna(), 'mol'
].apply(Chem.MolToInchiKey)
return df[['X1', 'ID1', 'mol']]
def read_protein_library(file_path):
df = None
if file_path.suffix == '.csv':
df = pd.read_csv(file_path)
elif file_path.suffix == '.fasta':
records = list(SeqIO.parse(file_path, 'fasta'))
df = pd.DataFrame([{'X2': str(record.seq), 'ID2': record.id} for record in records])
return df
def remove_halogens(mol):
if mol is None:
return None
halogens = ['F', 'Cl', 'Br', 'I', 'At']
# Enable editing
rw_mol = Chem.RWMol(mol)
for atom in rw_mol.GetAtoms():
if atom.GetSymbol() in halogens:
# Replace with hydrogen
atom.SetAtomicNum(1)
mol_no_halogens = Chem.Mol(rw_mol)
# Make hydrogen implicit
mol_no_halogens = Chem.RemoveHs(mol_no_halogens)
return mol_no_halogens
def process_fragment_library(df, dehalogenate=True, discard_inorganic=True):
"""
SMILES strings with separators (e.g., .) represent distinct molecular entities, such as ligands, ions, or
co-crystallized molecules. Splitting them ensures that each entity is treated individually, allowing focused
analysis of their roles in binding. Single atom fragments (e.g., counterions like [I-] or [Cl-] are irrelevant in
docking and are to be removed. This filtering focuses on structurally relevant fragments.
"""
# Remove fragments with invalid SMILES
df['mol'] = df['X1'].apply(read_molecule, remove_confs=True)
df = df.dropna(subset=['mol'])
df['X1'] = df['mol'].apply(Chem.MolToSmiles)
# Get subset of rows with SMILES containing separators
fragmented_rows = df['X1'].str.contains('.', regex=False)
df_fragmented = df[fragmented_rows].copy()
# Split SMILES into lists and expand
df_fragmented['X1'] = df_fragmented['X1'].str.split('.')
df_fragmented = df_fragmented.explode('X1').reset_index(drop=True)
# Append fragment index as alphabet (A, B, C... AA, AB...) to ID1 for rows with fragmented SMILES
df_fragmented['ID1'] = df_fragmented.groupby('ID1').cumcount().apply(num_to_letter_code).radd(
df_fragmented['ID1'] + '_')
df = pd.concat([df[~fragmented_rows], df_fragmented])
# Remove single atom fragments
df = df[df['mol'].apply(lambda mol: mol.GetNumAtoms() > 1)]
if discard_inorganic:
df = df[df['mol'].apply(lambda mol: any(atom.GetSymbol() == 'C' for atom in mol.GetAtoms()))]
if dehalogenate:
df['mol'] = df['mol'].apply(remove_halogens)
# Deduplicate fragments and canonicalize SMILES
df = df.groupby(['X1']).first().reset_index()
df['X1'] = df['mol'].apply(lambda x: Chem.MolToSmiles(x))
return df
def check_one_to_one(df, ID_column, X_column):
# Check for multiple X values for the same ID
id_to_x_conflicts = df.groupby(ID_column)[X_column].nunique()
conflicting_ids = id_to_x_conflicts[id_to_x_conflicts > 1]
# Check for multiple ID values for the same X
x_to_id_conflicts = df.groupby(X_column)[ID_column].nunique()
conflicting_xs = x_to_id_conflicts[x_to_id_conflicts > 1]
# Print conflicting mappings
if not conflicting_ids.empty:
print(f"Conflicting {ID_column} -> multiple {X_column}:")
for idx in conflicting_ids.index:
print(f"{ID_column}: {idx}, {X_column} values: {df[df[ID_column] == idx][X_column].unique()}")
if not conflicting_xs.empty:
print(f"Conflicting {X_column} -> multiple {ID_column}:")
for x in conflicting_xs.index:
print(f"{X_column}: {x}, {ID_column} values: {df[df[X_column] == x][ID_column].unique()}")
# Return whether the mappings are one-to-one
return conflicting_ids.empty and conflicting_xs.empty
def save_sdf(path, one_hot, positions, node_mask, is_geom):
# Select atom mapping based on whether geometry or generic atoms are used
idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
# Identify valid atoms based on the mask
mask = node_mask.squeeze()
atom_indices = torch.where(mask)[0]
obMol = ob.OBMol()
# Add atoms to OpenBabel molecule
atoms = torch.argmax(one_hot, dim=1)
for atom_i in atom_indices:
atom = atoms[atom_i].item()
atom_symbol = idx2atom[atom]
obAtom = obMol.NewAtom()
obAtom.SetAtomicNum(Chem.GetPeriodicTable().GetAtomicNumber(atom_symbol)) # Set atomic number
# Set atomic positions
pos = positions[atom_i]
obAtom.SetVector(pos[0].item(), pos[1].item(), pos[2].item())
# Infer bonds with OpenBabel
obMol.ConnectTheDots()
obMol.PerceiveBondOrders()
# Convert OpenBabel molecule to SDF
obConversion = ob.OBConversion()
obConversion.SetOutFormat("sdf")
sdf_string = obConversion.WriteString(obMol)
# Save SDF file
with open(path, "w") as f:
f.write(sdf_string)
# Generate SMILES
rdkit_mol = Chem.MolFromMolBlock(sdf_string)
if rdkit_mol is not None:
smiles = Chem.MolToSmiles(rdkit_mol)
else:
# Use OpenBabel to generate SMILES if RDKit fails
obConversion.SetOutFormat("can")
smiles = obConversion.WriteString(obMol).strip()
return smiles
def num_to_letter_code(n):
result = ''
while n >= 0:
result = chr(65 + (n % 26)) + result
n = n // 26 - 1
return result
def dock_fragments(
out_dir,
score_ckpt, confidence_ckpt, device,
inference_steps, n_poses, initial_noise_std_proportion, docking_batch_size,
no_final_step_noise,
temp_sampling_tr, temp_sampling_rot, temp_sampling_tor,
temp_psi_tr, temp_psi_rot, temp_psi_tor,
temp_sigma_data_tr, temp_sigma_data_rot,temp_sigma_data_tor,
save_docking,
df=None, protein_ligand_csv=None, fragment_library=None, protein_library=None,
):
with open(Path(score_ckpt).parent / 'model_parameters.yml') as f:
score_model_args = Namespace(**yaml.full_load(f))
with open(Path(confidence_ckpt).parent / 'model_parameters.yml') as f:
confidence_args = Namespace(**yaml.full_load(f))
docking_out_dir = Path(out_dir, 'docking')
docking_out_dir.mkdir(parents=True, exist_ok=True)
if df is None:
if protein_ligand_csv is not None:
csv_path = Path(protein_ligand_csv)
assert csv_path.is_file(), f"File {protein_ligand_csv} does not exist"
df = pd.read_csv(csv_path)
df = process_fragment_library(df)
else:
assert fragment_library is not None and protein_library is not None, "Either a .csv file or `X1` and `X2` must be provided."
compound_df = pd.DataFrame(columns=['X1', 'ID1'])
if Path(fragment_library).is_file():
compound_path = Path(fragment_library)
if compound_path.suffix in ['.csv', '.sdf']:
compound_df[['X1', 'ID1']] = read_fragment_library(compound_path)[['X1', 'ID1']]
else:
compound_df['X1'] = [compound_path]
compound_df['ID1'] = [compound_path.stem]
else:
compound_df['X1'] = [fragment_library]
compound_df['ID1'] = 'compound_0'
compound_df.dropna(subset=['X1'], inplace=True)
compound_df.loc[compound_df['ID1'].isna(), 'ID1'] = compound_df.loc[compound_df['ID1'].isna(), 'X1'].apply(
lambda x: Chem.MolToInchiKey(Chem.MolFromSmiles(x))
)
protein_df = pd.DataFrame(columns=['X2', 'ID2'])
if Path(protein_library).is_file():
protein_path = Path(protein_library)
if protein_path.suffix in ['.csv', '.fasta']:
protein_df[['X2', 'ID2']] = read_protein_library(protein_path)[['X2', 'ID2']]
else:
protein_df['X2'] = [protein_path]
protein_df['ID2'] = [protein_path.stem]
else:
protein_df['X2'] = [protein_library]
protein_df['ID2'] = 'protein_0'
protein_df.dropna(subset=['X2'], inplace=True)
protein_df.loc[protein_df['ID2'].isna(), 'ID2'] = [
f"protein_{i}" for i in range(protein_df['ID2'].isna().sum())
]
compound_df = process_fragment_library(compound_df)
df = compound_df.merge(protein_df, how='cross')
# Identify duplicates based on 'X1' and 'X2'
duplicates = df[df.duplicated(subset=['X1', 'X2'], keep=False)]
if not duplicates.empty:
print("Duplicate rows based on columns 'X1' and 'X2':\n", duplicates[['ID1', 'X1', 'ID2', 'X2']])
print("Keeping the first occurrence of each duplicate.")
df.drop_duplicates(subset=['X1', 'X2'], inplace=True)
df['name'] = df['ID2'] + '-' + df['ID1']
df = df.replace({pd.NA: None})
# Check unique mappings between IDn and Xn
assert check_one_to_one(df, 'ID1', 'X1'), "ID1-X1 mapping is not one-to-one."
assert check_one_to_one(df, 'ID2', 'X2'), "ID2-X2 mapping is not one-to-one."
"""
Docking phase
"""
# preprocessing of complexes into geometric graphs
test_dataset = InferenceDataset(
df=df, out_dir=out_dir,
lm_embeddings=True,
receptor_radius=score_model_args.receptor_radius,
remove_hs=True, # score_model_args.remove_hs,
c_alpha_max_neighbors=score_model_args.c_alpha_max_neighbors,
all_atoms=score_model_args.all_atoms, atom_radius=score_model_args.atom_radius,
atom_max_neighbors=score_model_args.atom_max_neighbors,
knn_only_graph=False if not hasattr(score_model_args, 'not_knn_only_graph')
else not score_model_args.not_knn_only_graph
)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
confidence_test_dataset = InferenceDataset(
df=df, out_dir=out_dir,
lm_embeddings=True,
receptor_radius=confidence_args.receptor_radius,
remove_hs=True, # confidence_args.remove_hs,
c_alpha_max_neighbors=confidence_args.c_alpha_max_neighbors,
all_atoms=confidence_args.all_atoms,
atom_radius=confidence_args.atom_radius,
atom_max_neighbors=confidence_args.atom_max_neighbors,
precomputed_lm_embeddings=test_dataset.lm_embeddings,
knn_only_graph=False if not hasattr(score_model_args, 'not_knn_only_graph')
else not score_model_args.not_knn_only_graph
)
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
model = get_model(
score_model_args, device,
t_to_sigma=t_to_sigma, no_parallel=True
)
state_dict = torch.load(Path(score_ckpt), map_location='cpu', weights_only=True)
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
confidence_model = get_model(
confidence_args, device,
t_to_sigma=t_to_sigma, no_parallel=True, confidence_mode=True, old=True
)
state_dict = torch.load(Path(confidence_ckpt), map_location='cpu', weights_only=True)
confidence_model.load_state_dict(state_dict, strict=True)
confidence_model = confidence_model.to(device)
confidence_model.eval()
tr_schedule = get_t_schedule(inference_steps=inference_steps, sigma_schedule='expbeta')
failures, skipped = 0, 0
samples_per_complex = n_poses
test_ds_size = len(test_dataset)
df = test_loader.dataset.df
docking_dfs = []
log.info(f'Size of fragment dataset: {test_ds_size}')
for idx, orig_complex_graph in tqdm(enumerate(test_loader), total=test_ds_size):
if not orig_complex_graph.success[0]:
skipped += 1
log.warning(
f"The test dataset did not contain {df['name'].iloc[idx]}"
f" for {df['X1'].iloc[idx]} and {df['X2'].iloc[idx]}. We are skipping this complex.")
continue
try:
if confidence_test_dataset is not None:
confidence_complex_graph = confidence_test_dataset[idx]
if not confidence_complex_graph.success:
skipped += 1
log.warning(
f"The confidence dataset did not contain {orig_complex_graph.name}. We are skipping this complex.")
continue
confidence_data_list = [copy.deepcopy(confidence_complex_graph) for _ in range(samples_per_complex)]
else:
confidence_data_list = None
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(samples_per_complex)]
randomize_position(
data_list, score_model_args.no_torsion, False, score_model_args.tr_sigma_max,
initial_noise_std_proportion=initial_noise_std_proportion, choose_residue=False
)
# run reverse diffusion
# TODO How to make full use of VRAM? seems the best way to create another loop for each fragment
'''
File "DiffFragDock/utils/sampling.py", line 142, in sampling
tr_perturb = (tr_g ** 2 * dt_tr * tr_score + tr_g * np.sqrt(dt_tr) * tr_z)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RuntimeError: The size of tensor a (4) must match the size of tensor b (16) at non-singleton dimension 0
'''
# TODO It seems molecules of different sizes cannot be in the same batch in inference
if n_poses <= docking_batch_size:
batch_size = n_poses
elif n_poses % docking_batch_size == 0:
batch_size = docking_batch_size
else:
raise ValueError
data_list, confidence = sampling(
data_list=data_list, model=model,
inference_steps=inference_steps,
tr_schedule=tr_schedule, rot_schedule=tr_schedule,
tor_schedule=tr_schedule,
device=device, t_to_sigma=t_to_sigma, model_args=score_model_args,
visualization_list=None, confidence_model=confidence_model,
confidence_data_list=confidence_data_list,
confidence_model_args=confidence_args,
batch_size=batch_size, no_final_step_noise=no_final_step_noise,
temp_sampling=[temp_sampling_tr, temp_sampling_rot, temp_sampling_tor],
temp_psi=[temp_psi_tr, temp_psi_rot, temp_psi_tor],
temp_sigma_data=[temp_sigma_data_tr, temp_sigma_data_rot,temp_sigma_data_tor]
)
ligand_pos = np.asarray(
[complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy() for
complex_graph in data_list]
)
# save predictions
n_samples = len(confidence)
sample_df = pd.DataFrame([df.iloc[idx]] * n_samples)
sample_df['ID1'] = [f"{df['ID1'].iloc[idx]}_{i}" for i in range(n_samples)]
confidence = confidence[:, 0].cpu().numpy()
sample_df['confidence'] = confidence
lig = orig_complex_graph.mol[0]
# TODO Use index instead of confidence in filename
if save_docking:
sample_df['ligand_conf_path'] = [
Path(
docking_out_dir, f"{df['name'].iloc[idx]}_{i}-confidence{confidence[i]:.2f}.sdf"
) for i in range(n_samples)
]
sample_df['ligand_mol']= [
create_mol_with_coords(
mol=RemoveAllHs(copy.deepcopy(lig)),
new_coords=pos,
path=sample_df['ligand_conf_path'].iloc[i] if save_docking else None
) for i, pos in enumerate(ligand_pos)
]
# sample_df['ligand_pos'] = list(ligand_pos)
docking_dfs.append(sample_df)
# write_dir = f"{args.out_dir}/{df['name'].iloc[idx]}"
# for rank, pos in enumerate(ligand_pos):
# mol_pred = copy.deepcopy(lig)
# if score_model_args.remove_hs: mol_pred = RemoveAllHs(mol_pred)
# if rank == 0: write_mol_with_coords(mol_pred, pos, Path(write_dir, f'rank{rank + 1}.sdf'))
# write_mol_with_coords(mol_pred, pos,
# Path(write_dir, f'rank{rank + 1}_confidence{confidence[rank]:.2f}.sdf'))
except Exception as e:
log.warning("Failed on", orig_complex_graph["name"], e)
failures += 1
# Tear down DiffDock models and datasets
model.cpu()
del model
if confidence_model is not None:
confidence_model.cpu()
del confidence_model
del test_dataset
if confidence_test_dataset is not None:
del confidence_test_dataset
del test_loader
docking_df = pd.concat(docking_dfs, ignore_index=True)
# Save intermediate docking results
if save_docking:
docking_df[
['name', 'ID2', 'protein_path', 'ID1', 'X1', 'confidence', 'ligand_conf_path']
].to_csv(Path(out_dir, 'docking_summary.csv'), index=False)
result_msg = f"""
Failed for {failures} / {test_ds_size} complexes.
Skipped {skipped} / {test_ds_size} complexes.
"""
if failures or skipped:
log.warning(result_msg)
else:
log.info(result_msg)
log.info(f"Docking results saved to {docking_out_dir}")
return docking_df
def calculate_mol_atomic_distances(mol1, mol2, distance_type='min'):
mol1_coords = [
mol1.GetConformer().GetAtomPosition(i) for i in range(mol1.GetNumAtoms())
]
mol2_coords = [
mol2.GetConformer().GetAtomPosition(i) for i in range(mol2.GetNumAtoms())
]
# Ensure numpy arrays
mol1_coords = np.array(mol1_coords)
mol2_coords = np.array(mol2_coords)
# Compute pairwise distances between carbon atoms
atom_pairwise_distances = np.linalg.norm(mol1_coords[:, None, :] - mol2_coords[None, :, :], axis=-1)
# if np.any(np.isnan(atom_pairwise_distances)):
# import pdb
# pdb.set_trace() # Trigger a breakpoint if NaN is found
if distance_type == 'min':
return atom_pairwise_distances.min()
elif distance_type == 'mean':
return atom_pairwise_distances.mean()
elif distance_type is None:
return atom_pairwise_distances
else:
raise ValueError(f"Unsupported distance_type: {distance_type}")
def process_docking_results(
df,
eps=5, # Distance threshold for DBSCAN clustering
min_samples=5, # Minimum number of samples for a cluster (enrichment)
frag_dist_range=(2, 5), # Distance range for fragment linking
distance_type='min', # Type of distance to compute between fragments
):
assert len(frag_dist_range) == 2, 'Distance range must be a tuple of two values in Angstroms (Å).'
frag_dist_range = sorted(frag_dist_range)
# The mols in df should have been processed to have no explicit hydrogens, except heavy hydrogen isotopes.
docking_summaries = [] # For saving intermediate docking results
fragment_combos = [] # Fragment pairs for the linking step
# 1. Cluster docking poses
# Compute pairwise distances of molecules defined by the closest non-heavy atoms
for protein, protein_df in df.groupby('X2'):
protein_id = protein_df['ID2'].iloc[0]
protein_path = protein_df['protein_path'].iloc[0]
protein_df['index'] = protein_df.index
log.info(f'Processing docking results for {protein_id}...')
dist_matrix = np.stack(
protein_df['ligand_mol'].parallel_apply(
lambda mol1: [
calculate_mol_atomic_distances(mol1, mol2, distance_type=distance_type)
for mol2 in protein_df['ligand_mol']
]
)
)
# Perform DBSCAN clustering
dbscan = DBSCAN(eps=eps, min_samples=min_samples, metric='precomputed')
protein_df['cluster'] = dbscan.fit_predict(dist_matrix)
protein_df = protein_df.sort_values(
by=['X1', 'cluster', 'confidence'], ascending=[True, True, False]
)
# Add conformer number to ID1
protein_df['ID1'] = protein_df.groupby('ID1').cumcount().astype(str).radd(protein_df['ID1'] + '_')
if args.save_docking:
docking_summaries.append(
protein_df[['name', 'ID2', 'X2', 'ID1', 'X1', 'cluster', 'confidence', 'ligand_conf_path']]
)
# Filter out outlier poses
protein_df = protein_df[protein_df['cluster'] != -1]
# Keep only the highest confidence pose per protein per ligand per cluster
protein_df = protein_df.groupby(['X1', 'cluster']).first().reset_index()
# 2. Create fragment-linking pairs
fragment_path = None
protein_fragment_combos = []
for cluster, cluster_df in protein_df.groupby('cluster'):
if len(cluster_df) > 1: # Skip clusters with only one pose
pairs = list(itertools.combinations(cluster_df['index'], 2))
for i, j in pairs:
row1 = cluster_df[cluster_df['index'] == i].iloc[0]
row2 = cluster_df[cluster_df['index'] == j].iloc[0]
dist = dist_matrix[i, j]
# Check if intermolecular distance is within the range
if frag_dist_range[0] < dist < frag_dist_range[1]:
combined_smiles = f"{row1['X1']}.{row2['X1']}"
combined_mol = Chem.CombineMols(row1['ligand_mol'], row2['ligand_mol'])
complex_name = f"{protein_id}-{row1['ID1']}-{row2['ID1']}"
if 'ligand_conf_path' in row1 and 'ligand_conf_path' in row2:
fragment_path = [str(row1['ligand_conf_path']), str(row2['ligand_conf_path'])]
protein_fragment_combos.append(
(complex_name, protein, protein_path, combined_smiles, fragment_path, combined_mol, dist)
)
log.info(f'Number of fragment pairs for {protein_id}: {len(protein_fragment_combos)}.')
fragment_combos.extend(protein_fragment_combos)
# Save intermediate docking results
if args.save_docking:
docking_summary_df = pd.concat(docking_summaries, ignore_index=True)
docking_summary_df.to_csv(Path(args.out_dir, 'docking_summary.csv'), index=False)
log.info(f'Saved intermediate docking results to {args.out_dir}')
# Convert fragment pair results to DataFrame
if fragment_combos:
linking_df = pd.DataFrame(
fragment_combos, columns=['name', 'X2', 'protein_path', 'X1', 'fragment_path', 'fragment_mol', 'distance']
)
if linking_df['fragment_path'].isnull().all():
linking_df.drop(columns=['fragment_path'], inplace=True)
linking_df.drop(columns=['fragment_mol']).to_csv(Path(args.out_dir, 'linking_summary.csv'), index=False)
return linking_df
else:
raise ValueError('No eligible fragment pairs found for linking.')
def extract_pockets(protein_path, ligand_residue=None, top_pockets=None):
protein_path = Path(protein_path)
if ligand_residue:
top_pockets = 1
# Copy the protein file to a temporary directory to avoid overwriting pocket files in different runs
tmp_dir = tempfile.mkdtemp()
tmp_protein_path = Path(tmp_dir) / protein_path.name
shutil.copy(protein_path, tmp_protein_path)
# Run fpocket
distance = 2.5
min_size = 30
args = ['./fpocket', '-d', '-f', tmp_protein_path, '-D', str(distance), '-i', str(min_size)]
if ligand_residue is not None:
args += ['-r', ligand_residue]
print(args)
subprocess.run(args, stdout=subprocess.DEVNULL)
fpocket_out_path = Path(str(tmp_protein_path.with_suffix('')) + '_out')
if not fpocket_out_path.is_dir():
raise ValueError(f"fpocket output directory not found: {fpocket_out_path}")
pocket_alpha_sphere_path_dict = {}
if top_pockets is not None:
pocket_names = [f'pocket{i}' for i in range(1, top_pockets + 1)]
for name in pocket_names:
pocket_path = Path(fpocket_out_path, f'{name}_vert.pqr').resolve()
if pocket_path.is_file():
pocket_alpha_sphere_path_dict[name] = str(pocket_path)
else:
# use fpocket_out_path.glob('*_vert.pqr')
pocket_alpha_sphere_path_dict = {
pocket_path.stem.split('_')[0]: str(pocket_path) for pocket_path in fpocket_out_path.glob('*_vert.pqr')
}
return pocket_alpha_sphere_path_dict
def check_pocket_overlap(mol, pocket_as):
mol_coords = [
mol.GetConformer().GetAtomPosition(i) for i in range(mol.GetNumAtoms())
]
for as_coords, as_radii in zip(pocket_as['coord'], pocket_as['radii']):
for atom_coord in mol_coords:
if np.linalg.norm(as_coords - atom_coord) < as_radii:
return True
return False
def deduplicate_conformers(fragment_df, rmsd_threshold=1.5):
if len(fragment_df) > 1:
mol_list = fragment_df['ligand_mol'].tolist()
indices_to_drop = set()
for i, mol1 in enumerate(mol_list):
if i in indices_to_drop: # Skip already marked duplicates
continue
for j, mol2 in enumerate(mol_list):
if i < j and j not in indices_to_drop: # Not comparing already removed molecules
rmsd = Chem.rdMolAlign.CalcRMS(mol1, mol2)
if rmsd < rmsd_threshold:
indices_to_drop.add(fragment_df.index[j]) # Mark duplicate for removal
fragment_df.drop(indices_to_drop, inplace=True)
return fragment_df
def select_fragment_pairs(
df,
pocket_path_dict=None,
top_pockets=3,
frag_dist_range=(2, 5), # Distance range for fragment linking
confidence_threshold=-1.5,
rmsd_threshold=1.5,
method='fpocket',
out_dir=Path('.'),
ligand_residue=None,
):
df = df[df['confidence'] > confidence_threshold].copy()
if 'ligand_mol' not in df.columns:
df['ligand_mol'] = df['ligand_conf_path'].apply(read_molecule)
# Given pocket_path_dict for single protein case
if pocket_path_dict is not None:
pocket_names = list(pocket_path_dict.keys())
top_pockets = len(pocket_names)
else:
pocket_names = [f'pocket{i}' for i in range(1, top_pockets + 1)]
# Add pocket columns to DataFrame
for name in pocket_names:
df[name] = False
fragment_conf_pairs = []
for protein_path, protein_df in df.groupby('protein_path'):
protein_path = Path(protein_path)
protein_fragment_conf_pairs = []
fragment_path = None
protein_id = protein_df['ID2'].iloc[0]
match method:
case 'fpocket':
# TODO: avoid reruning fpocket when proper job management is implemented
if pocket_path_dict is None:
pocket_path_dict = extract_pockets(protein_path, ligand_residue, top_pockets)
# Read pocket PQRs
for name in pocket_names:
pocket_as = read_pocket_alpha_spheres(pocket_path_dict[name])
# Check if any atom in a fragment conformer falls within pocket volume of alpha spheres
protein_df[name] = protein_df['ligand_mol'].parallel_apply(
check_pocket_overlap, pocket_as=pocket_as
)
case 'clustering':
# Clustering-based pocket finding
pass
# Filter out fragment conformers that do not overlap with any pocket
protein_df = protein_df[protein_df[pocket_names].any(axis=1)]
# Select fragment conformer pairs for linking per pocket based on distance range
for name in pocket_names:
pocket_df = protein_df[protein_df[name] == True].copy()
if len(pocket_df) > 1:
# pocket_path = pocket_alpha_sphere_path_dict[name]
# Deduplicate similar conformers with RDKit Chem.rdMolAlign.CalcRMS
pocket_df = pocket_df.groupby('X1', group_keys=False).parallel_apply(
deduplicate_conformers, rmsd_threshold=rmsd_threshold
).reset_index(drop=True)
pairs = list(itertools.combinations(pocket_df.index, 2))
dist_matrix = np.stack(
pocket_df['ligand_mol'].parallel_apply(
lambda mol1: [
calculate_mol_atomic_distances(mol1, mol2, distance_type='min')
for mol2 in pocket_df['ligand_mol']
]
)
)
for i, j in pairs:
dist = dist_matrix[i, j]
if frag_dist_range[0] < dist < frag_dist_range[1]:
row1 = pocket_df.loc[i]
row2 = pocket_df.loc[j]
combined_smiles = f"{row1['X1']}.{row2['X1']}"
combined_mol = Chem.CombineMols(row1['ligand_mol'], row2['ligand_mol'])
complex_name = f"{protein_id}-{row1['ID1']}-{row2['ID1']}"
if 'ligand_conf_path' in row1 and 'ligand_conf_path' in row2:
fragment_path = [row1['ligand_conf_path'], row2['ligand_conf_path']]
protein_fragment_conf_pairs.append(
(complex_name, protein_path, # pocket_path,
combined_smiles, fragment_path, combined_mol, dist)
)
log.info(f'Number of fragment pairs for {protein_id}: {len(protein_fragment_conf_pairs)}.')
fragment_conf_pairs.extend(protein_fragment_conf_pairs)
# Convert fragment pair results to DataFrame
if fragment_conf_pairs:
linking_df = pd.DataFrame(
fragment_conf_pairs,
columns=[
'name', 'protein_path', # 'pocket_path',
'X1', 'fragment_path', 'fragment_mol', 'distance'
]
)
if linking_df['fragment_path'].isnull().all():
linking_df.drop(columns=['fragment_path'], inplace=True)
linking_df.drop(columns=['fragment_mol']).to_csv(Path(out_dir, 'linking_summary.csv'), index=False)
return linking_df
else:
return None
def process_linking_results():
pass
def get_pocket(mol, pdb_path, backbone_atoms_only=False):
struct = PDBParser().get_structure('', pdb_path)
residue_ids = []
atom_coords = []
for residue in struct.get_residues():
resid = residue.get_id()[1]
for atom in residue.get_atoms():
atom_coords.append(atom.get_coord())
residue_ids.append(resid)
residue_ids = np.array(residue_ids)
atom_coords = np.array(atom_coords)
mol_atom_coords = mol.GetConformer().GetPositions()
distances = np.linalg.norm(atom_coords[:, None, :] - mol_atom_coords[None, :, :], axis=-1)
contact_residues = np.unique(residue_ids[np.where(distances.min(1) <= 6)[0]])
pocket_coords = []
pocket_types = []
for residue in struct.get_residues():
resid = residue.get_id()[1]
if resid not in contact_residues:
continue
for atom in residue.get_atoms():
atom_name = atom.get_name()
atom_type = atom.element.upper()
atom_coord = atom.get_coord()
if backbone_atoms_only and atom_name not in {'N', 'CA', 'C', 'O'}:
continue
pocket_coords.append(atom_coord.tolist())
pocket_types.append(atom_type)
pocket_pos = []
pocket_one_hot = []
pocket_charges = []
for coord, atom_type in zip(pocket_coords, pocket_types):
if atom_type not in const.GEOM_ATOM2IDX.keys():
continue
pocket_pos.append(coord)
pocket_one_hot.append(get_one_hot(atom_type, const.GEOM_ATOM2IDX))
pocket_charges.append(const.GEOM_CHARGES[atom_type])
pocket_pos = np.array(pocket_pos)
pocket_one_hot = np.array(pocket_one_hot)
pocket_charges = np.array(pocket_charges)
return pocket_pos, pocket_one_hot, pocket_charges
def read_pocket(path, backbone_atoms_only):
pocket_coords = []
pocket_types = []
struct = PDBParser().get_structure('', path)
for residue in struct.get_residues():
for atom in residue.get_atoms():
atom_name = atom.get_name()
atom_type = atom.element.upper()
atom_coord = atom.get_coord()
if backbone_atoms_only and atom_name not in {'N', 'CA', 'C', 'O'}:
continue
pocket_coords.append(atom_coord.tolist())
pocket_types.append(atom_type)
return {
'coord': np.array(pocket_coords),
'types': np.array(pocket_types),
}
def read_pocket_alpha_spheres(path):
ag = parsePQR(path)
as_coords = []
as_radii = []
for atom in ag:
as_coords.append(atom.getCoords())
as_radii.append(atom.getRadius())
return {
'coord': np.array(as_coords),
'radii': np.array(as_radii),
}
def generate_linkers(
df, backbone_atoms_only,
output_dir, n_samples, n_steps, linker_size, anchors, max_batch_size, random_seed, robust,
linker_ckpt, size_ckpt, linker_condition, device,
):
# Model setup
pocket_conditioned = linker_condition in ['protein', 'pocket']
if 'X2' in df.columns and pocket_conditioned:
if backbone_atoms_only:
linker_ckpt = linker_ckpt['pocket_bb']
else:
linker_ckpt = linker_ckpt['pocket_full']
else:
linker_ckpt = linker_ckpt['geom']
ddpm = DDPM.load_from_checkpoint(linker_ckpt, robust=robust, map_location=device).eval().to(device)
is_geom = ddpm.is_geom
if random_seed is not None:
set_deterministic(random_seed)
output_dir = Path(output_dir, 'linking')
output_dir.mkdir(exist_ok=True, parents=True)
linker_size = str(linker_size)
if linker_size == '0':
log.info(f'Will generate linkers with sampled numbers of atoms')
size_classifier = SizeClassifier.load_from_checkpoint(size_ckpt, map_location=device).eval().to(device)
def sample_fn(_data):
# TODO Improve efficiency: do not repeat sampling for the same fragment(-pocket) samples
out, _ = size_classifier.forward(
_data, return_loss=False, with_pocket=pocket_conditioned, adjust_shape=True
)
probabilities = torch.softmax(out, dim=1)
distribution = torch.distributions.Categorical(probs=probabilities)
samples = distribution.sample()
sizes = []
for label in samples.detach().cpu().numpy():
sizes.append(size_classifier.linker_id2size[label])
sizes = torch.tensor(sizes, device=samples.device, dtype=const.TORCH_INT)
return sizes
elif linker_size.isdigit():
log.info(f'Will generate linkers with {linker_size} atoms')
linker_size = int(linker_size)
def sample_fn(_data):
return torch.ones(_data['positions'].shape[0], device=device, dtype=const.TORCH_INT) * linker_size
else:
boundaries = [x.strip() for x in linker_size.split(',')]
if len(boundaries) == 2 and boundaries[0].isdigit() and boundaries[1].isdigit():
left = int(boundaries[0])
right = int(boundaries[1])
log.info(f'Will generate linkers with numbers of atoms sampled from U({left}, {right})')
def sample_fn(_data):
shape = len(_data['positions']),
return torch.randint(left, right + 1, shape, device=device, dtype=const.TORCH_INT)
if n_steps is not None:
ddpm.edm.T = n_steps
if ddpm.center_of_mass == 'anchors' and anchors is None:
log.warning(
"Using a anchor-conditioned DiffLinker checkpoint without providing anchors. "
"Forcing model's `center_of_mass` to 'fragments'."
)
ddpm.center_of_mass = 'fragments'
# # Apply the mapping to fill NaN values in ID1 and ID2
# if 'ID1' not in df.columns:
# df['ID1'] = None
# if 'ID2' not in df.columns:
# df['ID2'] = None
# df.loc[df['ID1'].isna(), 'ID1'] = df.loc[df['ID1'].isna(), 'X1'].apply(
# lambda x: Chem.MolToInchiKey(Chem.MolFromSmiles(x))
# )
# df.loc[df['ID2'].isna(), 'ID2'] = df.loc[df['ID2'].isna(), 'X2'].map({
# x2_value: f"protein_{i}"
# for i, x2_value in enumerate(df.loc[df['ID2'].isna(), 'X2'].unique())
# })
# # Identify duplicates based on 'X1' and 'X2'
# duplicates = df[df.duplicated(subset=['X1', 'X2'], keep=False)]
# if not duplicates.empty:
# print("Duplicate rows based on columns 'X1' and 'X2':\n", duplicates[['X1', 'X2']])
# print("Keeping the first occurrence of each duplicate.")
# df = df.drop_duplicates(subset=['X1', 'X2'])
# Dataset setup
if 'fragment_path' not in df.columns:
df['fragment_path'] = df['X1']
if 'fragment_mol' not in df.columns:
df['fragment_mol'] = df['fragment_path'].parallel_apply(read_molecule, remove_hs=True, remove_confs=False)
if 'protein_path' not in df.columns:
df['protein_path'] = df['X2']
if 'name' not in df.columns and 'ID1' in df.columns and 'ID2' in df.columns:
df['name'] = df['ID2'] + '-' + df['ID1']
df.dropna(subset=['fragment_mol', 'protein_path'], inplace=True)
cached_parse_molecule = cache(parse_molecule)
dataset = []
optional_keys = ['X2', 'protein_path']
for row in df.itertuples():
mol = row.fragment_mol # Hs already removed
# Parsing fragments data
frag_pos, frag_one_hot, frag_charges = cached_parse_molecule(mol, is_geom=is_geom)
# Parsing pocket data
if pocket_conditioned:
if linker_condition == 'protein':
pocket_pos, pocket_one_hot, pocket_charges = get_pocket(mol, row.protein_path, backbone_atoms_only)
elif linker_condition == 'pocket':
pocket_data = read_pocket(row.protein_path, backbone_atoms_only)
pocket_pos = pocket_data['coord']
pocket_one_hot = []
pocket_charges = []
for atom_type in pocket_data['types']:
pocket_one_hot.append(get_one_hot(atom_type, const.GEOM_ATOM2IDX))
pocket_charges.append(const.GEOM_CHARGES[atom_type])
pocket_one_hot = np.array(pocket_one_hot)
pocket_charges = np.array(pocket_charges)
positions = np.concatenate([frag_pos, pocket_pos], axis=0)
one_hot = np.concatenate([frag_one_hot, pocket_one_hot], axis=0)
charges = np.concatenate([frag_charges, pocket_charges], axis=0)
fragment_only_mask = np.concatenate([
np.ones_like(frag_charges),
np.zeros_like(pocket_charges),
])
pocket_mask = np.concatenate([
np.zeros_like(frag_charges),
np.ones_like(pocket_charges),
])
linker_mask = np.concatenate([
np.zeros_like(frag_charges),
np.zeros_like(pocket_charges),
])
fragment_mask = np.concatenate([
np.ones_like(frag_charges),
np.ones_like(pocket_charges),
])
else:
positions = frag_pos
one_hot = frag_one_hot
charges = frag_charges
fragment_only_mask = np.ones_like(charges)
pocket_mask = np.zeros_like(charges)
linker_mask = np.zeros_like(charges)
fragment_mask = np.ones_like(charges)
anchor_flags = np.zeros_like(charges)
if anchors is not None:
for anchor in anchors.split(','):
anchor_flags[int(anchor.strip()) - 1] = 1
data = {
'name': row.name,
'X1': row.X1,
'fragment_path': row.fragment_path,
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device),
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device),
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device),
'anchors': torch.tensor(anchor_flags, dtype=const.TORCH_FLOAT, device=device),
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device),
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device),
'num_atoms': len(positions)
}
for k in optional_keys:
if hasattr(row, k):
data[k] = getattr(row, k)
if pocket_conditioned:
data |= {
'X2': row.X2,
'protein_path': row.protein_path,
'pocket_mask': torch.tensor(pocket_mask, dtype=const.TORCH_FLOAT, device=device),
'fragment_only_mask': torch.tensor(fragment_only_mask, dtype=const.TORCH_FLOAT, device=device),
}
dataset.extend([data] * n_samples)
ddpm.val_dataset = dataset
global_batch_size = min(n_samples, max_batch_size)
log.info(f'DiffLinker global batch size: {global_batch_size}')
dataloader = get_dataloader(
dataset, batch_size=global_batch_size,
collate_fn=collate_with_fragment_without_pocket_edges if pocket_conditioned else collate_with_fragment_edges
)
# df.drop(columns=['ligand_mol', 'protein_path'], inplace=True)
linking_dfs = []
# Sampling
print('Sampling...')
# TODO: update linking_summary.csv per batch
for batch_i, data in tqdm(enumerate(dataloader), total=len(dataloader)):
effective_batch_size = len(data['positions'])
batch_data = {
'name': data['name'],
'X1': data['X1'],
'fragment_path': data['fragment_path'],
}
for k in optional_keys:
if k in data:
batch_data[k] = data[k]
if pocket_conditioned:
batch_data |= {
'X2': data['X2'],
'protein_path': data['protein_path'],
}
batch_df = pd.DataFrame(batch_data)
chain = None
node_mask = None
for i in range(5):
try:
chain, node_mask = ddpm.sample_chain(data, sample_fn=sample_fn, keep_frames=1)
break
except FoundNaNException:
continue
if chain is None:
log.warning(f'Could not generate linker for batch {batch_i} in 5 attempts')
continue
x = chain[0][:, :, :ddpm.n_dims]
h = chain[0][:, :, ddpm.n_dims:]
# Put the molecule back to the initial orientation
if ddpm.center_of_mass == 'fragments':
if pocket_conditioned:
com_mask = data['fragment_only_mask']
else:
com_mask = data['fragment_mask']
else:
com_mask = data['anchors']
pos_masked = data['positions'] * com_mask
N = com_mask.sum(1, keepdims=True)
mean = torch.sum(pos_masked, dim=1, keepdim=True) / N
x = x + mean * node_mask
if pocket_conditioned:
node_mask[torch.where(data['pocket_mask'])] = 0
batch_df['one_hot'] = list(h.cpu())
batch_df['positions'] = list(x.cpu())
batch_df['node_mask'] = list(node_mask.cpu())
linking_dfs.append(batch_df)
# for i in range(effective_batch_size):
# # # Save XYZ file and generate SMILES
# # out_xyz = Path(output_dir, f'{name}_{offset_idx+i}.xyz')
# # smiles = save_xyz_files(out_xyz, h[i], x[i], node_mask[i], is_geom=is_geom)
# # # Convert XYZ to SDF
# # out_sdf = Path(output_dir, name, f'output_{offset_idx+i}.sdf')
# # with open(os.devnull, 'w') as devnull:
# # subprocess.run(f'obabel {out_xyz} -O {out_sdf} -q', shell=True, stdout=devnull)
# # Save SDF file and generate SMILES
# out_sdf = Path(output_dir, f'{data["name"][i]}.sdf')
# smiles = save_sdf(out_sdf, h[i], x[i], node_mask[i], is_geom=is_geom)
#
# # Add experiment summary info
# batch_df['X1^'] = smiles
# batch_df['out_path'] = str(out_sdf)
# linking_dfs.append(batch_df)
# Tear down
ddpm.cpu()
del ddpm
if linking_dfs:
linking_summary_df = pd.concat(linking_dfs, ignore_index=True)
linking_summary_df['out_path'] = linking_summary_df.groupby('name').cumcount().apply(
lambda x: f"{x:0{len(str(linking_summary_df.groupby('name').cumcount().max()))}d}"
).radd(linking_summary_df['name'] + '_') + '.sdf'
linking_summary_df['X1^'] = linking_summary_df.parallel_apply( # parallel_apply bug
lambda x: save_sdf(
output_dir / x['out_path'], x['one_hot'], x['positions'], x['node_mask'], is_geom=is_geom
), axis=1
)
# TODO add 'pocket_path' and 'distance'
linking_summary_df[
['name', 'protein_path', 'fragment_path', 'X1', 'X1^', 'out_path']
].to_csv(Path(output_dir.parent, 'linking_summary.csv'), index=False)
print(f'Saved experiment summary and generated molecules to {output_dir}')
else:
raise ValueError('No linkers generated.')
if __name__ == "__main__":
parser = ArgumentParser()
# Fragment docking settings
parser.add_argument('--config', type=FileType(mode='r'), default='default_inference_args.yaml')
parser.add_argument('--protein_ligand_csv', type=str, default=None,
help='Path to a .csv file specifying the input as described in the README. '
'If this is not None, it will be used instead of the `X1` and `X2` parameters')
parser.add_argument('-n', '--name', type=str, default=None,
help='Name that the experiment will be saved with')
parser.add_argument('--X1', type=str,
help='Either a SMILES string or the path of a molecule file that rdkit can read')
parser.add_argument('--X2', type=str,
help='Either a FASTA sequence or the path of a protein for ESMFold')
parser.add_argument('-l', '--log', '--loglevel', type=str, default='INFO', dest="loglevel",
help='Log level. Default %(default)s')
parser.add_argument('--out_dir', type=str, default='results/',
help='Directory where the outputs will be written to')
parser.add_argument('--save_docking', action='store_true', default=True,
help='Save the intermediate docking results including SDF files and a summary CSV.')
parser.add_argument('--save_visualisation', action='store_true', default=False,
help='Save a pdb file with all of the steps of the reverse diffusion')
parser.add_argument('--samples_per_complex', type=int, default=10,
help='Number of samples to generate')
# parser.add_argument('--model_dir', type=str, default=None,
# help='Path to folder with trained score model and hyperparameters')
parser.add_argument('--score_ckpt', type=str, default='best_ema_inference_epoch_model.pt',
help='Checkpoint to use for the score model')
# parser.add_argument('--confidence_model_dir', type=str, default=None,
# help='Path to folder with trained confidence model and hyperparameters')
parser.add_argument('--confidence_ckpt', type=str, default='best_model.pt',
help='Checkpoint to use for the confidence model')
parser.add_argument('--n_poses', type=int, default=10, help='')
parser.add_argument('--no_final_step_noise', action='store_true', default=True,
help='Use no noise in the final step of the reverse diffusion')
parser.add_argument('--inference_steps', type=int, default=20, help='Number of denoising steps')
parser.add_argument('--initial_noise_std_proportion', type=float, default=-1.0,
help='Initial noise std proportion')
parser.add_argument('--choose_residue', action='store_true', default=False, help='')
parser.add_argument('--temp_sampling_tr', type=float, default=1.0)
parser.add_argument('--temp_psi_tr', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_tr', type=float, default=0.5)
parser.add_argument('--temp_sampling_rot', type=float, default=1.0)
parser.add_argument('--temp_psi_rot', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_rot', type=float, default=0.5)
parser.add_argument('--temp_sampling_tor', type=float, default=1.0)
parser.add_argument('--temp_psi_tor', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_tor', type=float, default=0.5)
parser.add_argument('--gnina_minimize', action='store_true', default=False, help='')
parser.add_argument('--gnina_path', type=str, default='gnina', help='')
parser.add_argument('--gnina_log_file', type=str, default='gnina_log.txt',
help='') # To redirect gnina subprocesses stdouts from the terminal window
parser.add_argument('--gnina_full_dock', action='store_true', default=False, help='')
parser.add_argument('--gnina_autobox_add', type=float, default=4.0)
parser.add_argument('--gnina_poses_to_optimize', type=int, default=1)
# Linker generation settings
# parser.add_argument('--fragments', action='store', type=str, required=True,
# help='Path to the file with input fragments'
# )
# parser.add_argument(
# '--protein', action='store', type=str, required=True,
# help='Path to the file with the target protein'
# )
parser.add_argument(
'--backbone_atoms_only', action='store_true', required=False, default=False,
help='Flag if to use only protein backbone atoms'
)
parser.add_argument(
'--linker_ckpt', action='store', type=str,
help='Path to the DiffLinker model'
)
parser.add_argument(
'--linker_size', action='store', type=str, default='0',
help='Linker size (int) or allowed size boundaries (comma-separated) or path to the size prediction model'
)
parser.add_argument(
'--n_linkers', action='store', type=int, required=False, default=5,
help='Number of linkers to generate'
)
parser.add_argument(
'--linker_steps', action='store', type=int, required=False, default=1000,
help='Number of denoising steps'
)
parser.add_argument(
'--anchors', action='store', type=str, required=False, default=None,
help='Comma-separated indices of anchor atoms '
'(according to the order of atoms in the input fragments file, enumeration starts with 1)'
)
parser.add_argument(
'--linker_batch_size', action='store', type=int, required=False,
help='Max batch size for linker generation model'
)
parser.add_argument(
'--docking_batch_size', action='store', type=int, required=False,
help='Max batch size for fragment docking model'
)
parser.add_argument(
'--random_seed', action='store', type=int, required=False, default=None,
help='Random seed'
)
parser.add_argument(
'--robust', action='store_true', required=False, default=False,
help='Robust sampling modification'
)
parser.add_argument(
'--dock', action='store_true', default=False,
help='Fragment docking with DiffDock'
)
parser.add_argument(
'--link', action='store_true', default=False,
help='Linker generation with DiffLinker'
)
args = parser.parse_args()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
# if isinstance(value, list):
# for v in value:
# arg_dict[key].append(v)
# else:
arg_dict[key] = value
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
date_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
experiment_name = f"{date_time}_{args.name}"
args.out_dir = Path(args.out_dir, experiment_name)
args.out_dir.mkdir(exist_ok=True, parents=True)
configure_logger(args.loglevel, logfile=args.out_dir / 'inference.log')
log = get_logger()
log.info(f"DiffFBDD will run on {device}")
docking_df = None
linking_df = None
if args.dock:
docking_df = dock_fragments(
protein_ligand_csv=args.protein_ligand_csv,
fragment_library=args.X1, protein_library=args.X2, out_dir=args.out_dir,
score_ckpt=args.score_ckpt, confidence_ckpt=args.confidence_ckpt,
inference_steps=args.inference_steps, n_poses=args.n_poses, docking_batch_size=args.docking_batch_size,
initial_noise_std_proportion=args.initial_noise_std_proportion,
no_final_step_noise=args.no_final_step_noise,
temp_sampling_tr=args.temp_sampling_tr,
temp_sampling_rot=args.temp_sampling_rot,
temp_sampling_tor=args.temp_sampling_tor,
temp_psi_tr=args.temp_psi_tr,
temp_psi_rot=args.temp_psi_rot,
temp_psi_tor=args.temp_psi_tor,
temp_sigma_data_tr=args.temp_sigma_data_tr,
temp_sigma_data_rot=args.temp_sigma_data_rot,
temp_sigma_data_tor=args.temp_sigma_data_tor,
save_docking=args.save_docking, device=device,
)
# linking_df = process_docking_results(
# docking_df,
# eps=args.eps, min_samples=args.min_samples,
# frag_dist_range=args.frag_dist_range, distance_type=args.distance_type
# )
else:
df = pd.read_csv(args.protein_ligand_csv)
if 'ligand_conf_path' in df.columns:
docking_df = df
else:
linking_df = df
if args.link:
if docking_df is not None and linking_df is None:
linking_df = select_fragment_pairs(
docking_df,
top_pockets=args.top_pockets,
frag_dist_range=args.frag_dist_range,
confidence_threshold=args.confidence_threshold,
rmsd_threshold=args.rmsd_threshold,
out_dir=args.out_dir,
)
if linking_df is None or len(linking_df) == 0:
raise ValueError('No eligible fragment-conformer pairs found for fragment linking.')
generate_linkers(
linking_df,
backbone_atoms_only=args.backbone_atoms_only,
output_dir=args.out_dir,
n_samples=args.n_linkers,
n_steps=args.linker_steps,
linker_size=args.linker_size,
anchors=args.anchors,
max_batch_size=args.linker_batch_size,
random_seed=args.random_seed,
robust=args.robust,
linker_ckpt=args.linker_ckpt,
size_ckpt=args.size_ckpt,
linker_condition=args.linker_condition,
device=device,
) |