Spaces:
Sleeping
Sleeping
Remove LFS cache
Browse files- unconditioned_geom.yaml +0 -43
- utils/so3.py +9 -9
- utils/torus.py +4 -4
unconditioned_geom.yaml
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
actual_steps: 19
|
2 |
-
score_ckpt: resources/checkpoints/DiffDock/score_model/best_ema_inference_epoch_model.pt
|
3 |
-
confidence_ckpt: resources/checkpoints/DiffDock/confidence_model/best_model_epoch75.pt
|
4 |
-
#confidence_model_dir: ./workdir/v1.1/confidence_model
|
5 |
-
different_schedules: false
|
6 |
-
inf_sched_alpha: 1
|
7 |
-
inf_sched_beta: 1
|
8 |
-
inference_steps: 20
|
9 |
-
initial_noise_std_proportion: 1.4601642460337794
|
10 |
-
limit_failures: 5
|
11 |
-
#model_dir: ./workdir/v1.1/score_model
|
12 |
-
#comment
|
13 |
-
no_final_step_noise: true
|
14 |
-
no_model: false
|
15 |
-
no_random: false
|
16 |
-
no_random_pocket: false
|
17 |
-
ode: false
|
18 |
-
old_filtering_model: true
|
19 |
-
old_score_model: false
|
20 |
-
resample_rdkit: false
|
21 |
-
samples_per_complex: 10
|
22 |
-
sigma_schedule: expbeta
|
23 |
-
temp_psi_rot: 0.9022615585677628
|
24 |
-
temp_psi_tor: 0.5946212391366862
|
25 |
-
temp_psi_tr: 0.727287304570729
|
26 |
-
temp_sampling_rot: 2.06391612594481
|
27 |
-
temp_sampling_tor: 7.044261621607846
|
28 |
-
temp_sampling_tr: 1.170050527854316
|
29 |
-
temp_sigma_data_rot: 0.7464326999906034
|
30 |
-
temp_sigma_data_tor: 0.6943254174849822
|
31 |
-
temp_sigma_data_tr: 0.9299802531572672
|
32 |
-
|
33 |
-
eps: 5
|
34 |
-
min_samples: 10
|
35 |
-
frag_dist_range: (2, 5)
|
36 |
-
distance_type: min
|
37 |
-
|
38 |
-
linker_ckpt:
|
39 |
-
pocket_full: resources/checkpoints/DiffLinker/pockets_difflinker_full_no_anchors_fc_pdb_excluded.ckpt
|
40 |
-
pocket_bb: resources/checkpoints/DiffLinker/pockets_difflinker_backbone.ckpt
|
41 |
-
geom: resources/checkpoints/DiffLinker/geom_difflinker.ckpt
|
42 |
-
linker_size: resources/checkpoints/DiffLinker/geom_size_gnn.ckpt
|
43 |
-
linker_condition: 'protein' # pocket
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/so3.py
CHANGED
@@ -42,11 +42,11 @@ def _score(exp, omega, eps, L=2000): # score of density over SO(3)
|
|
42 |
return dSigma / exp
|
43 |
|
44 |
|
45 |
-
if os.path.exists('
|
46 |
-
_omegas_array = np.load('
|
47 |
-
_cdf_vals = np.load('
|
48 |
-
_score_norms = np.load('
|
49 |
-
_exp_score_norms = np.load('
|
50 |
else:
|
51 |
_eps_array = 10 ** np.linspace(np.log10(MIN_EPS), np.log10(MAX_EPS), N_EPS)
|
52 |
_omegas_array = np.linspace(0, np.pi, X_N + 1)[1:]
|
@@ -58,10 +58,10 @@ else:
|
|
58 |
|
59 |
_exp_score_norms = np.sqrt(np.sum(_score_norms**2 * _pdf_vals, axis=1) / np.sum(_pdf_vals, axis=1) / np.pi)
|
60 |
|
61 |
-
np.save('
|
62 |
-
np.save('
|
63 |
-
np.save('
|
64 |
-
np.save('
|
65 |
|
66 |
|
67 |
def sample(eps):
|
|
|
42 |
return dSigma / exp
|
43 |
|
44 |
|
45 |
+
if os.path.exists('resources/precomputed/.so3_omegas_array4.npy'):
|
46 |
+
_omegas_array = np.load('resources/precomputed/.so3_omegas_array4.npy')
|
47 |
+
_cdf_vals = np.load('resources/precomputed/.so3_cdf_vals4.npy')
|
48 |
+
_score_norms = np.load('resources/precomputed/.so3_score_norms4.npy')
|
49 |
+
_exp_score_norms = np.load('resources/precomputed/.so3_exp_score_norms4.npy')
|
50 |
else:
|
51 |
_eps_array = 10 ** np.linspace(np.log10(MIN_EPS), np.log10(MAX_EPS), N_EPS)
|
52 |
_omegas_array = np.linspace(0, np.pi, X_N + 1)[1:]
|
|
|
58 |
|
59 |
_exp_score_norms = np.sqrt(np.sum(_score_norms**2 * _pdf_vals, axis=1) / np.sum(_pdf_vals, axis=1) / np.pi)
|
60 |
|
61 |
+
np.save('resources/precomputed/.so3_omegas_array4.npy', _omegas_array)
|
62 |
+
np.save('resources/precomputed/.so3_cdf_vals4.npy', _cdf_vals)
|
63 |
+
np.save('resources/precomputed/.so3_score_norms4.npy', _score_norms)
|
64 |
+
np.save('resources/precomputed/.so3_exp_score_norms4.npy', _exp_score_norms)
|
65 |
|
66 |
|
67 |
def sample(eps):
|
utils/torus.py
CHANGED
@@ -28,12 +28,12 @@ SIGMA_MIN, SIGMA_MAX, SIGMA_N = 3e-3, 2, 5000 # relative to pi
|
|
28 |
x = 10 ** np.linspace(np.log10(X_MIN), 0, X_N + 1) * np.pi
|
29 |
sigma = 10 ** np.linspace(np.log10(SIGMA_MIN), np.log10(SIGMA_MAX), SIGMA_N + 1) * np.pi
|
30 |
|
31 |
-
if os.path.exists('
|
32 |
-
p_ = np.load('
|
33 |
-
score_ = np.load('
|
34 |
else:
|
35 |
p_ = p(x, sigma[:, None], N=100)
|
36 |
-
np.save('
|
37 |
|
38 |
eps = np.finfo(p_.dtype).eps
|
39 |
score_ = grad(x, sigma[:, None], N=100) / (p_ + eps)
|
|
|
28 |
x = 10 ** np.linspace(np.log10(X_MIN), 0, X_N + 1) * np.pi
|
29 |
sigma = 10 ** np.linspace(np.log10(SIGMA_MIN), np.log10(SIGMA_MAX), SIGMA_N + 1) * np.pi
|
30 |
|
31 |
+
if os.path.exists('resources/precomputed/.p.npy'):
|
32 |
+
p_ = np.load('resources/precomputed/.p.npy')
|
33 |
+
score_ = np.load('resources/precomputed/.score.npy')
|
34 |
else:
|
35 |
p_ = p(x, sigma[:, None], N=100)
|
36 |
+
np.save('resources/precomputed/.p.npy', p_)
|
37 |
|
38 |
eps = np.finfo(p_.dtype).eps
|
39 |
score_ = grad(x, sigma[:, None], N=100) / (p_ + eps)
|