libokj commited on
Commit
7a2bb38
·
1 Parent(s): 41da971

Remove LFS cache

Browse files
Files changed (3) hide show
  1. unconditioned_geom.yaml +0 -43
  2. utils/so3.py +9 -9
  3. utils/torus.py +4 -4
unconditioned_geom.yaml DELETED
@@ -1,43 +0,0 @@
1
- actual_steps: 19
2
- score_ckpt: resources/checkpoints/DiffDock/score_model/best_ema_inference_epoch_model.pt
3
- confidence_ckpt: resources/checkpoints/DiffDock/confidence_model/best_model_epoch75.pt
4
- #confidence_model_dir: ./workdir/v1.1/confidence_model
5
- different_schedules: false
6
- inf_sched_alpha: 1
7
- inf_sched_beta: 1
8
- inference_steps: 20
9
- initial_noise_std_proportion: 1.4601642460337794
10
- limit_failures: 5
11
- #model_dir: ./workdir/v1.1/score_model
12
- #comment
13
- no_final_step_noise: true
14
- no_model: false
15
- no_random: false
16
- no_random_pocket: false
17
- ode: false
18
- old_filtering_model: true
19
- old_score_model: false
20
- resample_rdkit: false
21
- samples_per_complex: 10
22
- sigma_schedule: expbeta
23
- temp_psi_rot: 0.9022615585677628
24
- temp_psi_tor: 0.5946212391366862
25
- temp_psi_tr: 0.727287304570729
26
- temp_sampling_rot: 2.06391612594481
27
- temp_sampling_tor: 7.044261621607846
28
- temp_sampling_tr: 1.170050527854316
29
- temp_sigma_data_rot: 0.7464326999906034
30
- temp_sigma_data_tor: 0.6943254174849822
31
- temp_sigma_data_tr: 0.9299802531572672
32
-
33
- eps: 5
34
- min_samples: 10
35
- frag_dist_range: (2, 5)
36
- distance_type: min
37
-
38
- linker_ckpt:
39
- pocket_full: resources/checkpoints/DiffLinker/pockets_difflinker_full_no_anchors_fc_pdb_excluded.ckpt
40
- pocket_bb: resources/checkpoints/DiffLinker/pockets_difflinker_backbone.ckpt
41
- geom: resources/checkpoints/DiffLinker/geom_difflinker.ckpt
42
- linker_size: resources/checkpoints/DiffLinker/geom_size_gnn.ckpt
43
- linker_condition: 'protein' # pocket
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/so3.py CHANGED
@@ -42,11 +42,11 @@ def _score(exp, omega, eps, L=2000): # score of density over SO(3)
42
  return dSigma / exp
43
 
44
 
45
- if os.path.exists('.so3_omegas_array4.npy'):
46
- _omegas_array = np.load('.so3_omegas_array4.npy')
47
- _cdf_vals = np.load('.so3_cdf_vals4.npy')
48
- _score_norms = np.load('.so3_score_norms4.npy')
49
- _exp_score_norms = np.load('.so3_exp_score_norms4.npy')
50
  else:
51
  _eps_array = 10 ** np.linspace(np.log10(MIN_EPS), np.log10(MAX_EPS), N_EPS)
52
  _omegas_array = np.linspace(0, np.pi, X_N + 1)[1:]
@@ -58,10 +58,10 @@ else:
58
 
59
  _exp_score_norms = np.sqrt(np.sum(_score_norms**2 * _pdf_vals, axis=1) / np.sum(_pdf_vals, axis=1) / np.pi)
60
 
61
- np.save('.so3_omegas_array4.npy', _omegas_array)
62
- np.save('.so3_cdf_vals4.npy', _cdf_vals)
63
- np.save('.so3_score_norms4.npy', _score_norms)
64
- np.save('.so3_exp_score_norms4.npy', _exp_score_norms)
65
 
66
 
67
  def sample(eps):
 
42
  return dSigma / exp
43
 
44
 
45
+ if os.path.exists('resources/precomputed/.so3_omegas_array4.npy'):
46
+ _omegas_array = np.load('resources/precomputed/.so3_omegas_array4.npy')
47
+ _cdf_vals = np.load('resources/precomputed/.so3_cdf_vals4.npy')
48
+ _score_norms = np.load('resources/precomputed/.so3_score_norms4.npy')
49
+ _exp_score_norms = np.load('resources/precomputed/.so3_exp_score_norms4.npy')
50
  else:
51
  _eps_array = 10 ** np.linspace(np.log10(MIN_EPS), np.log10(MAX_EPS), N_EPS)
52
  _omegas_array = np.linspace(0, np.pi, X_N + 1)[1:]
 
58
 
59
  _exp_score_norms = np.sqrt(np.sum(_score_norms**2 * _pdf_vals, axis=1) / np.sum(_pdf_vals, axis=1) / np.pi)
60
 
61
+ np.save('resources/precomputed/.so3_omegas_array4.npy', _omegas_array)
62
+ np.save('resources/precomputed/.so3_cdf_vals4.npy', _cdf_vals)
63
+ np.save('resources/precomputed/.so3_score_norms4.npy', _score_norms)
64
+ np.save('resources/precomputed/.so3_exp_score_norms4.npy', _exp_score_norms)
65
 
66
 
67
  def sample(eps):
utils/torus.py CHANGED
@@ -28,12 +28,12 @@ SIGMA_MIN, SIGMA_MAX, SIGMA_N = 3e-3, 2, 5000 # relative to pi
28
  x = 10 ** np.linspace(np.log10(X_MIN), 0, X_N + 1) * np.pi
29
  sigma = 10 ** np.linspace(np.log10(SIGMA_MIN), np.log10(SIGMA_MAX), SIGMA_N + 1) * np.pi
30
 
31
- if os.path.exists('.p.npy'):
32
- p_ = np.load('.p.npy')
33
- score_ = np.load('.score.npy')
34
  else:
35
  p_ = p(x, sigma[:, None], N=100)
36
- np.save('.p.npy', p_)
37
 
38
  eps = np.finfo(p_.dtype).eps
39
  score_ = grad(x, sigma[:, None], N=100) / (p_ + eps)
 
28
  x = 10 ** np.linspace(np.log10(X_MIN), 0, X_N + 1) * np.pi
29
  sigma = 10 ** np.linspace(np.log10(SIGMA_MIN), np.log10(SIGMA_MAX), SIGMA_N + 1) * np.pi
30
 
31
+ if os.path.exists('resources/precomputed/.p.npy'):
32
+ p_ = np.load('resources/precomputed/.p.npy')
33
+ score_ = np.load('resources/precomputed/.score.npy')
34
  else:
35
  p_ = p(x, sigma[:, None], N=100)
36
+ np.save('resources/precomputed/.p.npy', p_)
37
 
38
  eps = np.finfo(p_.dtype).eps
39
  score_ = grad(x, sigma[:, None], N=100) / (p_ + eps)