#!/usr/bin/env python import csv import numpy as np import pandas as pd import sys from networkx.algorithms import isomorphism from rdkit import Chem from rdkit.Chem import MolStandardize, QED, rdMolAlign, rdMolDescriptors from src.delinker_utils import calc_SC_RDKit, frag_utils, sascorer from src.utils import disable_rdkit_logging from tqdm import tqdm from pdb import set_trace disable_rdkit_logging() if len(sys.argv) != 9: print("Not provided all arguments") quit() data_set = sys.argv[1] # Options: ZINC, CASF gen_smi_file = sys.argv[2] # Path to generated molecules train_set_path = sys.argv[3] # Path to training set n_cores = int(sys.argv[4]) # Number of cores to use verbose = bool(sys.argv[5]) # Output results if sys.argv[6] == "None": restrict = None else: restrict = int(sys.argv[6]) # Set to None if don't want to restrict pains_smarts_loc = sys.argv[7] # Path to PAINS SMARTS method = sys.argv[8] assert method in ['diffusion', '3dlinker', 'delinker'] if verbose: print("##### Start Settings #####") print("Data set:", data_set) print("Generated smiles file:", gen_smi_file) print("Training set:", train_set_path) print("Number of cores:", n_cores) print("Verbose:", verbose) print("Restrict data:", restrict) print("PAINS SMARTS location:", pains_smarts_loc) print("##### End Settings #####") # Load molecules # FORMAT: (Starting fragments (SMILES), Original molecule (SMILES), Generated molecule (SMILES), Generated linker) data = [] with open(gen_smi_file, 'r') as f: for line in tqdm(f.readlines()): parts = line.strip().split(' ') data.append({ 'fragments': parts[0], 'true_molecule': parts[1], 'pred_molecule': parts[2], 'pred_linker': parts[3] if len(parts) > 3 else '', }) if restrict is not None: data = data[:restrict] summary = {} # -------------- Validity -------------- # def is_valid(pred_mol_smiles, frag_smiles): pred_mol = Chem.MolFromSmiles(pred_mol_smiles) frag = Chem.MolFromSmiles(frag_smiles) if frag is None: return False if pred_mol is None: return False try: Chem.SanitizeMol(pred_mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES) except Exception: return False if len(pred_mol.GetSubstructMatch(frag)) != frag.GetNumAtoms(): return False return True valid_cnt = 0 total_cnt = 0 for obj in tqdm(data): valid = is_valid(obj['pred_molecule'], obj['fragments']) obj['valid'] = valid valid_cnt += valid total_cnt += 1 validity = valid_cnt / total_cnt * 100 print(f'Validity: {validity:.3f}%') summary['validity'] = validity # ----------------- QED ------------------ # qed_values = [] for obj in tqdm(data): if not obj['valid']: obj['qed'] = None continue qed = QED.qed(Chem.MolFromSmiles(obj['pred_molecule'])) obj['qed'] = qed qed_values.append(qed) print(f'Mean QED: {np.mean(qed_values):.3f}') summary['qed'] = np.mean(qed_values) # ----------------- SA ------------------ # sa_values = [] for obj in tqdm(data): if not obj['valid']: obj['sa'] = None continue sa = sascorer.calculateScore(Chem.MolFromSmiles(obj['pred_molecule'])) obj['sa'] = sa sa_values.append(sa) print(f'Mean SA: {np.mean(sa_values):.3f}') summary['sa'] = np.mean(sa_values) # ----------------- Number of Rings ------------------ # rings_n_values = [] for obj in tqdm(data): if not obj['valid']: obj['rings_n'] = None continue try: rings_n = rdMolDescriptors.CalcNumRings(Chem.MolFromSmiles(obj['pred_linker'])) except: continue obj['rings_n'] = rings_n rings_n_values.append(rings_n) print(f'Mean Number of Rings: {np.mean(rings_n_values):.3f}') summary['rings_n'] = np.mean(rings_n_values) # -------------- Uniqueness -------------- # true2samples = dict() for obj in tqdm(data): if not obj['valid']: continue true_mol = obj['true_molecule'] true_frags = obj['fragments'] key = f'{true_mol}_{true_frags}' true2samples.setdefault(key, []).append(obj['pred_molecule']) unique_cnt = 0 total_cnt = 0 for samples in tqdm(true2samples.values()): unique_cnt += len(set(samples)) total_cnt += len(samples) uniqueness = unique_cnt / total_cnt * 100 print(f'Uniqueness: {uniqueness:.3f}%') summary['uniqueness'] = uniqueness # ----------------- Novelty ---------------- # linkers_train = set() with open(train_set_path, 'r') as f: for line in f: linkers_train.add(line.strip()) novel_cnt = 0 total_cnt = 0 for obj in tqdm(data): if not obj['valid']: obj['pred_linker_clean'] = None obj['novel'] = False continue try: linker = Chem.RemoveStereochemistry(obj['pred_linker']) linker = MolStandardize.canonicalize_tautomer_smiles(Chem.MolToSmiles(linker)) except Exception: linker = obj['pred_linker'] novel = linker not in linkers_train obj['pred_linker_clean'] = linker obj['novel'] = novel novel_cnt += novel total_cnt += 1 novelty = novel_cnt / total_cnt * 100 print(f'Novelty: {novelty:.3f}%') summary['novelty'] = novelty # ----------------- Recovery ---------------- # recovered_inputs = set() all_inputs = set() for obj in tqdm(data): if not obj['valid']: obj['recovered'] = False continue key = obj['true_molecule'] + '_' + obj['fragments'] try: true_mol = Chem.MolFromSmiles(obj['true_molecule']) Chem.RemoveStereochemistry(true_mol) true_mol_smi = Chem.MolToSmiles(Chem.RemoveHs(true_mol)) except: true_mol = Chem.MolFromSmiles(obj['true_molecule'], sanitize=False) Chem.RemoveStereochemistry(true_mol) true_mol_smi = Chem.MolToSmiles(Chem.RemoveHs(true_mol, sanitize=False)) pred_mol = Chem.MolFromSmiles(obj['pred_molecule']) Chem.RemoveStereochemistry(pred_mol) pred_mol_smi = Chem.MolToSmiles(Chem.RemoveHs(pred_mol)) recovered = true_mol_smi == pred_mol_smi obj['recovered'] = recovered if recovered: recovered_inputs.add(key) all_inputs.add(key) recovery = len(recovered_inputs) / len(all_inputs) * 100 print(f'Recovery: {recovery:.3f}%') summary['recovery'] = recovery # ----------------- PAINS Filter ---------------- # def check_pains(mol, pains): for pain in pains: if mol.HasSubstructMatch(pain): return False return True with open(pains_smarts_loc, 'r') as f: pains_smarts = [Chem.MolFromSmarts(line[0], mergeHs=True) for line in csv.reader(f)] pains_smarts = set(pains_smarts) passed_pains_cnt = 0 total_cnt = 0 for obj in tqdm(data): if not obj['valid']: obj['passed_pains'] = False continue pred_mol = Chem.MolFromSmiles(obj['pred_molecule']) passed_pains = check_pains(pred_mol, pains_smarts) obj['passed_pains'] = passed_pains passed_pains_cnt += passed_pains total_cnt += 1 pains_score = passed_pains_cnt / total_cnt * 100 print(f'Passed PAINS: {pains_score:.3f}%') summary['pains'] = pains_score # ----------------- RA Filter ---------------- # def check_ring_filter(linker): check = True ssr = Chem.GetSymmSSSR(linker) for ring in ssr: for atom_idx in ring: for bond in linker.GetAtomWithIdx(atom_idx).GetBonds(): if bond.GetBondType() == 2 and bond.GetBeginAtomIdx() in ring and bond.GetEndAtomIdx() in ring: check = False return check passed_ring_filter_cnt = 0 total_cnt = 0 for obj in tqdm(data): if not obj['valid']: obj['passed_ring_filter'] = False continue pred_linker = Chem.MolFromSmiles(obj['pred_linker'], sanitize=False) try: passed_ring_filter = check_ring_filter(pred_linker) except: obj['passed_ring_filter'] = False continue obj['passed_ring_filter'] = passed_ring_filter passed_ring_filter_cnt += passed_ring_filter total_cnt += 1 ra_score = passed_ring_filter_cnt / total_cnt * 100 print(f'Passed Ring Filter: {ra_score:.3f}%') summary['ra'] = ra_score # ---------------------------- Saving -------------------------------- # out_path = gen_smi_file[:-3] + 'csv' table = pd.DataFrame(data) table.to_csv(out_path, index=False) summary_path = gen_smi_file[:-4] + '_summary.csv' summary_table = pd.DataFrame([summary]) summary_table.to_csv(summary_path, index=False) # ----------------------- RMSD --------------------- # sdf_path = gen_smi_file[:-3] + 'sdf' pred_mol_3d = Chem.SDMolSupplier(sdf_path) if method == 'diffusion' and data_set == 'ZINC': # Use SMILES of test set generated for molecules processed by OpenBabel # (for consistency with other evaluation metrics) # Because SMILES produced by our model are also based on OpenBabel true_smi_path = 'datasets/zinc_final_test_smiles.smi' true_mol_path = 'datasets/zinc_final_test_molecules.sdf' true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values true_mol_3d = Chem.SDMolSupplier(true_mol_path) true_smi2mol3d = dict(zip(true_smi, true_mol_3d)) elif method == 'diffusion' and data_set == 'CASF': # Use SMILES of test set generated for molecules processed by OpenBabel # (for consistency with other evaluation metrics) # Because SMILES produced by our model are also based on OpenBabel true_smi_path = 'datasets/casf_final_test_smiles.smi' true_mol_path = 'datasets/casf_final_test_molecules.sdf' true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values true_mol_3d = Chem.SDMolSupplier(true_mol_path) true_smi2mol3d = dict(zip(true_smi, true_mol_3d)) elif method == 'diffusion' and data_set == 'GEOM': # Use SMILES of test set generated for molecules processed by OpenBabel # (for consistency with other evaluation metrics) # Because SMILES produced by our model are also based on OpenBabel true_smi_path = 'datasets/geom_multifrag_test_smiles.smi' true_mol_path = 'datasets/geom_multifrag_test_molecules.sdf' true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values true_mol_3d = Chem.SDMolSupplier(true_mol_path) true_smi2mol3d = dict(zip(true_smi, true_mol_3d)) elif method == 'diffusion' and data_set == 'MOAD': # Use SMILES of test set generated for molecules processed by OpenBabel # (for consistency with other evaluation metrics) # Because SMILES produced by our model are also based on OpenBabel true_smi_path = 'datasets/MOAD_test_smiles.smi' true_mol_path = 'datasets/MOAD_test_molecules.sdf' true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values true_mol_3d = Chem.SDMolSupplier(true_mol_path) true_smi2mol3d = dict(zip(true_smi, true_mol_3d)) else: raise NotImplementedError def find_exit(mol, num_frag): neighbors = [] for atom_idx in range(num_frag, mol.GetNumAtoms()): N = mol.GetAtoms()[atom_idx].GetNeighbors() for n in N: if n.GetIdx() < num_frag: neighbors.append(n.GetIdx()) return neighbors rmsd_list = [] for i, (obj, pred) in tqdm(enumerate(zip(data, pred_mol_3d)), total=len(data)): obj['rmsd'] = None if not obj['recovered']: continue true = true_smi2mol3d[obj['true_molecule']] Chem.RemoveStereochemistry(true) true = Chem.RemoveHs(true) Chem.RemoveStereochemistry(pred) pred = Chem.RemoveHs(pred) G1 = frag_utils.topology_from_rdkit(pred) G2 = frag_utils.topology_from_rdkit(true) GM = isomorphism.GraphMatcher(G1, G2) flag = GM.is_isomorphic() frag_size = Chem.MolFromSmiles(obj['fragments']).GetNumAtoms() # exits = find_exit(pred, frag_size) # if flag and len(exits) == 2: if flag: error = Chem.rdMolAlign.GetBestRMS(pred, true) # try: # error = Chem.rdMolAlign.GetBestRMS(pred, true) # except: # set_trace() num_linker = pred.GetNumAtoms() - frag_size num_atoms = pred.GetNumAtoms() error *= np.sqrt(num_atoms / num_linker) # only count rmsd on linker rmsd_list.append(error) obj['rmsd'] = error rmsd_score = np.mean(rmsd_list) print(f'Mean RMSD: {rmsd_score:.3f}') summary['rmsd'] = rmsd_score # ----------------------------- SC-RDKit -------------------------- # def calc_sc_rdkit_full_mol(gen_mol, ref_mol): try: _ = rdMolAlign.GetO3A(gen_mol, ref_mol).Align() sc_score = calc_SC_RDKit.calc_SC_RDKit_score(gen_mol, ref_mol) return sc_score except: return -0.5 sc_rdkit_list = [] for i, (obj, pred) in tqdm(enumerate(zip(data, pred_mol_3d)), total=len(data)): obj['sc_rdkit'] = None if not obj['valid']: continue true = true_smi2mol3d[obj['true_molecule']] score = calc_sc_rdkit_full_mol(pred, true) sc_rdkit_list.append(score) obj['sc_rdkit'] = score sc_rdkit_list = np.array(sc_rdkit_list) sc_rdkit_7 = (sc_rdkit_list > 0.7).sum() / len(sc_rdkit_list) * 100 sc_rdkit_8 = (sc_rdkit_list > 0.8).sum() / len(sc_rdkit_list) * 100 sc_rdkit_9 = (sc_rdkit_list > 0.9).sum() / len(sc_rdkit_list) * 100 sc_rdkit_mean = np.mean(sc_rdkit_list) print(f'SC_RDKit > 0.7: {sc_rdkit_7:3f}%') print(f'SC_RDKit > 0.8: {sc_rdkit_8:3f}%') print(f'SC_RDKit > 0.9: {sc_rdkit_9:3f}%') print(f'Mean SC_RDKit: {sc_rdkit_mean}') summary['sc_rdkit_7'] = sc_rdkit_7 summary['sc_rdkit_8'] = sc_rdkit_8 summary['sc_rdkit_9'] = sc_rdkit_9 summary['sc_rdkit_mean'] = sc_rdkit_mean # ---------------------------- Saving -------------------------------- # out_path = gen_smi_file[:-3] + 'csv' table = pd.DataFrame(data) table.to_csv(out_path, index=False) summary_path = gen_smi_file[:-4] + '_summary.csv' summary_table = pd.DataFrame([summary]) summary_table.to_csv(summary_path, index=False)