File size: 9,787 Bytes
fd21f2f 253bbca ef19caa 5a41550 ef19caa fd21f2f 253bbca 5a41550 253bbca 6d286c3 aec7db1 ef19caa bc828c5 5a41550 d350b44 253bbca 76a283e aec7db1 253bbca fbee6fd f1bc1ad 253bbca 41869c7 253bbca 41869c7 6245e44 253bbca aec7db1 41869c7 253bbca d8d7b29 c3b53aa 253bbca 9d2346f ad7b3f8 9d2346f 253bbca aec7db1 4726829 aec7db1 4726829 253bbca aec7db1 253bbca aec7db1 253bbca bc828c5 aec7db1 ef19caa 253bbca ef19caa bc828c5 253bbca 1b8ac52 41869c7 76a283e 41869c7 253bbca 41869c7 253bbca bc828c5 a2d40e3 253bbca bc828c5 a2d40e3 bc828c5 a2d40e3 253bbca a2d40e3 253bbca 41869c7 1b8ac52 41869c7 76a283e d350b44 aec7db1 1b8ac52 253bbca 1b8ac52 94ae8af 1b8ac52 ef19caa f9987db aec7db1 253bbca aec7db1 253bbca aec7db1 253bbca aec7db1 253bbca aec7db1 ef19caa 253bbca aec7db1 253bbca aec7db1 ef19caa 253bbca f9987db cee1d41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import logging
import os
import random
from datetime import timedelta
from statistics import mean
from typing import Annotated, Any, Iterator, Union
import fasttext
from cashews import cache
from dotenv import load_dotenv
from fastapi import FastAPI, Path, Query
from httpx import AsyncClient, Client, Timeout
from huggingface_hub import hf_hub_download
from iso639 import Lang
from starlette.responses import RedirectResponse
from toolz import concat, groupby, valmap
cache.setup("mem://")
logger = logging.getLogger(__name__)
app = FastAPI()
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
FASTTEXT_PREFIX_LENGTH = 9 # fasttext labels are formatted like "__label__eng_Latn"
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
DEFAULT_FAST_TEXT_MODEL = "facebook/fasttext-language-identification"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
timeout = Timeout(60, read=120)
client = Client(headers=headers, timeout=timeout)
async_client = AsyncClient(headers=headers, timeout=timeout)
TARGET_COLUMN_NAMES = {
"text",
"input",
"tokens",
"prompt",
"instruction",
"sentence_1",
"question",
"sentence2",
"answer",
"sentence",
"response",
"context",
"query",
"chosen",
"rejected",
"question"
}
def datasets_server_valid_rows(hub_id: str):
try:
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/is-valid?dataset={hub_id}")
data = resp.json()
return True if data.get("viewer") else bool(data.get("preview"))
except Exception as e:
logger.error(f"Failed to get is-valid for {hub_id}: {e}")
return False
async def get_first_config_and_split_name(hub_id: str):
try:
resp = await async_client.get(
f"https://datasets-server.huggingface.co/splits?dataset={hub_id}"
)
data = resp.json()
return data["splits"][0]["config"], data["splits"][0]["split"]
except Exception as e:
logger.error(f"Failed to get splits for {hub_id}: {e}")
return None
async def get_dataset_info(hub_id: str, config: str | None = None):
if config is None:
config = get_first_config_and_split_name(hub_id)
if config is None:
return None
else:
config = config[0]
resp = await async_client.get(
f"{BASE_DATASETS_SERVER_URL}/info?dataset={hub_id}&config={config}"
)
resp.raise_for_status()
return resp.json()
@cache(ttl=timedelta(minutes=5))
async def fetch_rows(url: str) -> list[dict]:
response = await async_client.get(url)
if response.status_code == 200:
data = response.json()
return data.get("rows")
else:
print(f"Failed to fetch data: {response.status_code}")
print(url)
return []
# Function to get random rows from the dataset
async def get_random_rows(
hub_id: str,
total_length: int,
number_of_rows: int,
max_request_calls: int,
config="default",
split="train",
):
rows = []
rows_per_call = min(
number_of_rows // max_request_calls, total_length // max_request_calls
)
rows_per_call = min(rows_per_call, 100) # Ensure rows_per_call is not more than 100
for _ in range(min(max_request_calls, number_of_rows // rows_per_call)):
offset = random.randint(0, total_length - rows_per_call)
url = f"https://datasets-server.huggingface.co/rows?dataset={hub_id}&config={config}&split={split}&offset={offset}&length={rows_per_call}"
logger.info(f"Fetching {url}")
batch_rows = await fetch_rows(url)
rows.extend(batch_rows)
if len(rows) >= number_of_rows:
break
return [row.get("row") for row in rows]
def load_model(repo_id: str) -> fasttext.FastText._FastText:
from pathlib import Path
Path("code/models").mkdir(parents=True, exist_ok=True)
model_path = hf_hub_download(
repo_id,
"model.bin",
# cache_dir="code/models",
# local_dir="code/models",
# local_dir_use_symlinks=False,
)
return fasttext.load_model(model_path)
model = load_model(DEFAULT_FAST_TEXT_MODEL)
def yield_clean_rows(rows: Union[list[str], str], min_length: int = 3) -> Iterator[str]:
for row in rows:
if isinstance(row, str):
# split on lines and remove empty lines
line = row.split("\n")
for line in line:
if line:
yield line
elif isinstance(row, list):
try:
line = " ".join(row)
if len(line) < min_length:
continue
else:
yield line
except TypeError:
continue
def model_predict(inputs: str, k=1) -> list[dict[str, float]]:
predictions = model.predict(inputs, k=k)
return [
{"label": label[FASTTEXT_PREFIX_LENGTH:], "score": prob}
for label, prob in zip(predictions[0], predictions[1])
]
def get_label(x):
return x.get("label")
def get_mean_score(preds):
return mean([pred.get("score") for pred in preds])
def filter_by_frequency(counts_dict: dict, threshold_percent: float = 0.2):
"""Filter a dict to include items whose value is above `threshold_percent`"""
total = sum(counts_dict.values())
threshold = total * threshold_percent
return {k for k, v in counts_dict.items() if v >= threshold}
def try_parse_language(lang: str) -> str | None:
try:
split = lang.split("_")
lang = split[0]
lang = Lang(lang)
return lang.pt1
except Exception as e:
logger.error(f"Failed to parse language {lang}: {e}")
return None
def predict_rows(
rows, target_column, language_threshold_percent=0.2, return_raw_predictions=False
):
rows = (row.get(target_column) for row in rows)
rows = (row for row in rows if row is not None)
rows = list(yield_clean_rows(rows))
predictions = [model_predict(row) for row in rows]
predictions = [pred for pred in predictions if pred is not None]
predictions = list(concat(predictions))
predictions_by_lang = groupby(get_label, predictions)
langues_counts = valmap(len, predictions_by_lang)
keys_to_keep = filter_by_frequency(
langues_counts, threshold_percent=language_threshold_percent
)
filtered_dict = {k: v for k, v in predictions_by_lang.items() if k in keys_to_keep}
raw_model_prediction_summary = dict(valmap(get_mean_score, filtered_dict))
parsed_langs = {
try_parse_language(k): v for k, v in raw_model_prediction_summary.items()
}
default_data = {
"language_prediction_summary": parsed_langs,
"raw_model_prediction_summary": raw_model_prediction_summary,
"hub_id": "hub_id",
"config": "config",
}
if return_raw_predictions:
default_data["raw_predictions"] = predictions
return default_data
# @app.get("/", response_class=HTMLResponse)
# async def read_index():
# html_content = Path("index.html").read_text()
# return HTMLResponse(content=html_content)
@app.get("/", include_in_schema=False)
def root():
return RedirectResponse(url="/docs")
# item_id: Annotated[int, Path(title="The ID of the item to get", ge=1)], q: str
@app.get("/predict_dataset_language/{hub_id:path}")
@cache(ttl=timedelta(minutes=10))
async def predict_language(
hub_id: Annotated[str, Path(title="The hub id of the dataset to predict")],
config: str | None = None,
split: str | None = None,
max_request_calls: Annotated[
int, Query(title="Max number of requests to datasets server", gt=0, le=50)
] = 10,
number_of_rows: int = 1000,
language_threshold_percent: float = 0.2,
) -> dict[Any, Any] | None:
is_valid = datasets_server_valid_rows(hub_id)
if not is_valid:
logger.error(f"Dataset {hub_id} is not accessible via the datasets server.")
if not config and not split:
config, split = await get_first_config_and_split_name(hub_id)
if not config:
config, _ = await get_first_config_and_split_name(hub_id)
if not split:
_, split = await get_first_config_and_split_name(hub_id)
info = await get_dataset_info(hub_id, config)
if info is None:
logger.error(f"Dataset {hub_id} is not accessible via the datasets server.")
return None
if dataset_info := info.get("dataset_info"):
total_rows_for_split = dataset_info.get("splits").get(split).get("num_examples")
features = dataset_info.get("features")
column_names = set(features.keys())
logger.info(f"Column names: {column_names}")
if not set(column_names).intersection(TARGET_COLUMN_NAMES):
logger.error(
f"Dataset {hub_id} {column_names} is not in any of the target columns {TARGET_COLUMN_NAMES}"
)
return None
for column in TARGET_COLUMN_NAMES:
if column in column_names:
target_column = column
logger.info(f"Using column {target_column} for language detection")
break
random_rows = await get_random_rows(
hub_id,
total_rows_for_split,
number_of_rows,
max_request_calls,
config,
split,
)
logger.info(f"Predicting language for {len(random_rows)} rows")
predictions = predict_rows(
random_rows,
target_column,
language_threshold_percent=language_threshold_percent,
)
predictions["hub_id"] = hub_id
predictions["config"] = config
predictions["split"] = split
return predictions
|