davanstrien HF Staff commited on
Commit
80aa351
·
1 Parent(s): a6338be

Upload 3 files

Browse files
Files changed (3) hide show
  1. data.parquet +3 -0
  2. main.py +150 -0
  3. requirements.txt +7 -0
data.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32f51e54683c1fa3390bc4e318e1008d686844bb451b82c3c1a91787e2b986d9
3
+ size 3765676
main.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ import gradio as gr
3
+ import polars as pl
4
+ from functools import lru_cache
5
+ from cytoolz import concat, frequencies, topk
6
+ from datasets import load_dataset
7
+ from ast import literal_eval
8
+ from typing import Union, List, Optional
9
+ import numpy as np
10
+ from itertools import combinations
11
+ from toolz import unique
12
+ import pandas as pd
13
+
14
+ pd.options.plotting.backend = "plotly"
15
+
16
+
17
+ def download_dataset():
18
+ return load_dataset("open-source-metrics/model-repos-stats", split="train")
19
+
20
+
21
+ def _clean_tags(tags: Optional[Union[str, List[str]]]):
22
+ try:
23
+ tags = literal_eval(tags)
24
+ if isinstance(tags, str):
25
+ return [tags]
26
+ if isinstance(tags, list):
27
+ return [tag for tag in tags if isinstance(tag, str)]
28
+ else:
29
+ return []
30
+ except (ValueError, SyntaxError):
31
+ return []
32
+
33
+
34
+ def prep_dataset():
35
+ ds = download_dataset()
36
+ df = ds.to_pandas()
37
+ df['languages'] = df['languages'].apply(_clean_tags)
38
+ df['datasets'] = df['datasets'].apply(_clean_tags)
39
+ df['tags'] = df['tags'].apply(_clean_tags)
40
+ df = df.drop(columns=['Unnamed: 0'])
41
+ df.to_parquet("data.parquet")
42
+ return df
43
+
44
+
45
+ def load_data():
46
+ return pd.read_parquet("data.parquet")
47
+
48
+
49
+ def filter_df_by_library(filter='transformers'):
50
+ df = load_data()
51
+ return df[df['library'] == filter] if filter else df
52
+
53
+
54
+ @lru_cache()
55
+ def get_library_choices(min_freq: int = 50):
56
+ df = load_data()
57
+ library_counts = df.library.value_counts()
58
+ return library_counts[library_counts > min_freq].index.to_list()
59
+
60
+
61
+ @lru_cache()
62
+ def get_all_tags():
63
+ df = load_data()
64
+ tags = df['tags'].to_list()
65
+ return list(concat(tags))
66
+
67
+ @lru_cache()
68
+ def get_case_sensitive_duplicate_tags():
69
+ tags = get_all_tags()
70
+ unique_tags = unique(tags)
71
+ return [
72
+ tag_combo
73
+ for tag_combo in combinations(unique_tags, 2)
74
+ if tag_combo[0].lower() == tag_combo[1].lower()
75
+ ]
76
+
77
+
78
+ def display_case_sensitive_duplicate_tags():
79
+ return pd.DataFrame(get_case_sensitive_duplicate_tags())
80
+
81
+ def tag_frequency(case_sensitive=True):
82
+ tags = get_all_tags()
83
+ if not case_sensitive:
84
+ tags = (tag.lower() for tag in tags)
85
+ tags_frequencies = dict(frequencies(tags))
86
+ df = pd.DataFrame.from_dict(tags_frequencies, orient='index', columns=['Count']).sort_values(
87
+ by='Count', ascending=False)
88
+ return df
89
+
90
+ def plot_frequency(filter):
91
+ df = filter_df_by_library(filter)
92
+ tags = concat(df['tags'])
93
+ tags = dict(frequencies(tags))
94
+ df = pd.DataFrame.from_dict(tags, orient='index', columns=['Count']).sort_values(
95
+ by='Count', ascending=False)
96
+ return df
97
+
98
+
99
+ def has_model_card_by_library(top_n):
100
+ df = load_data()
101
+ if top_n:
102
+ top_libs = df.library.value_counts().head(int(top_n)).index.to_list()
103
+ # min_thresh = df.library.value_counts()[:min_number].index.to_list()
104
+ df = df[df.library.isin(top_libs)]
105
+ return df.groupby('library')['has_text'].apply(lambda x: np.sum(x) / len(x)).sort_values().plot.barh()
106
+
107
+
108
+ def model_card_length_by_library(top_n):
109
+ df = load_data()
110
+ if top_n:
111
+ top_libs = df.library.value_counts().head(int(top_n)).index.to_list()
112
+ # min_thresh = df.library.value_counts()[:min_number].index.to_list()
113
+ df = df[df.library.isin(top_libs)]
114
+ return df.groupby('library')['text_length'].describe().round().reset_index()
115
+ # df = df.groupby('library')['text_length'].describe().round().reset_index()
116
+ # df['library'] = df.library.apply(lambda library: f"[{library}](https://huggingface.co/models?library={library})")
117
+ # return df.to_markdown()
118
+
119
+
120
+ df = load_data()
121
+ top_n = df.library.value_counts().shape[0]
122
+
123
+ with gr.Blocks() as demo:
124
+ gr.Markdown("# 🤗 Hub Metadata Explorer")
125
+ gr.Markdown("Some explanation")
126
+ with gr.Tab("Tags overview"):
127
+ gr.Markdown("Tags are one of the key...")
128
+ with gr.Row():
129
+ gr.Markdown("thsh")
130
+ with gr.Row():
131
+ case_sensitive = gr.Checkbox(False,label=)
132
+ gr.Plot(tag_frequency())
133
+ with gr.Row():
134
+ gr.Markdown(f"Number of tags which are case sensitive {len(get_case_sensitive_duplicate_tags())}")
135
+ with gr.Accordion("View duplicate tags", open=False):
136
+ gr.Dataframe(display_case_sensitive_duplicate_tags())
137
+ with gr.Tab("Model Cards"):
138
+ gr.Markdown("""Model cards are a key component of metadata for a model. Model cards can include both
139
+ information created by a human i.e. outlining the goals behind the creation of the model and information
140
+ created by a training framework. This automatically generated information can contain information about
141
+ number of epochs, learning rate, weight decay etc. """)
142
+ min_lib_frequency = gr.Slider(minimum=1, maximum=top_n, value=10, label='filter by top n libraries')
143
+ with gr.Column():
144
+ plot = gr.Plot()
145
+ min_lib_frequency.change(has_model_card_by_library, [min_lib_frequency], plot, queue=False)
146
+ with gr.Column():
147
+ df = gr.Dataframe()
148
+ min_lib_frequency.change(model_card_length_by_library, [min_lib_frequency], df, queue=False)
149
+
150
+ demo.launch(debug=True)
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ gradio==3.15.0
2
+ pandas
3
+ polars
4
+ datasets
5
+ cytoolz
6
+ plotly
7
+ tabulate