File size: 5,896 Bytes
ad38c8f 284db10 ad38c8f 17b4878 c9dab8a ad38c8f e5cdc54 4fd027c ad38c8f 976f652 ad38c8f 976f652 ad38c8f 4fd027c ad38c8f 976f652 ad38c8f 976f652 ad38c8f 976f652 ad38c8f 976f652 ad38c8f 976f652 e5cdc54 976f652 ad38c8f 976f652 ad38c8f 976f652 ad38c8f 976f652 ab438d6 976f652 ad38c8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import arxiv
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from cachetools import TTLCache, cached
from setfit import SetFitModel
from tqdm.auto import tqdm
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
CACHE_TIME = 60 * 60 * 12 # 12 hours
MAX_RESULTS = 1_000
@cached(cache=TTLCache(maxsize=10, ttl=CACHE_TIME))
def get_arxiv_result():
search = arxiv.Search(
query="ti:dataset AND abs:machine learning",
max_results=MAX_RESULTS,
sort_by=arxiv.SortCriterion.SubmittedDate,
)
return [
{
"title": result.title,
"abstract": result.summary,
"url": result.entry_id,
"category": result.primary_category,
"updated": result.updated,
}
for result in tqdm(search.results(), total=MAX_RESULTS)
]
def load_model():
return SetFitModel.from_pretrained("librarian-bots/is_new_dataset_teacher_model")
def format_row_for_model(row):
return f"TITLE: {row['title']} \n\nABSTRACT: {row['abstract']}"
int2label = {0: "new_dataset", 1: "not_new_dataset"}
def get_predictions(data: list[dict], model=None, batch_size=64):
if model is None:
model = load_model()
predictions = []
for i in tqdm(range(0, len(data), batch_size)):
batch = data[i : i + batch_size]
text_inputs = [format_row_for_model(row) for row in batch]
batch_predictions = model.predict_proba(text_inputs)
for j, row in enumerate(batch):
prediction = batch_predictions[j]
row["prediction"] = int2label[int(prediction.argmax())]
row["probability"] = float(prediction.max())
predictions.append(row)
return predictions
def create_markdown(row):
title = row["title"]
abstract = row["abstract"]
arxiv_id = row["arxiv_id"]
hub_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
updated = row["updated"]
updated = updated.strftime("%Y-%m-%d")
broad_category = row["broad_category"]
category = row["category"]
return f""" <h2> {title} </h2> Updated: {updated}
| Category: {broad_category} | Subcategory: {category} |
\n\n{abstract}
\n\n [Hugging Face Papers page]({hub_paper_url})
"""
@cached(cache=TTLCache(maxsize=10, ttl=CACHE_TIME))
def prepare_data():
print("Downloading arxiv results...")
arxiv_results = get_arxiv_result()
print("loading model...")
model = load_model()
print("Making predictions...")
predictions = get_predictions(arxiv_results, model=model)
df = pd.DataFrame(predictions)
df.loc[:, "arxiv_id"] = df["url"].str.extract(r"(\d+\.\d+)")
df.loc[:, "broad_category"] = df["category"].str.split(".").str[0]
df.loc[:, "markdown"] = df.apply(create_markdown, axis=1)
return df
all_possible_arxiv_categories = sorted(prepare_data().category.unique().tolist())
broad_categories = sorted(prepare_data().broad_category.unique().tolist())
def create_markdown_summary(categories=None, new_only=True, narrow_categories=None):
df = prepare_data()
if new_only:
df = df[df["prediction"] == "new_dataset"]
if narrow_categories is not None:
df = df[df["category"].isin(narrow_categories)]
if categories is not None and not narrow_categories:
df = df[df["broad_category"].isin(categories)]
number_of_results = len(df)
results = (
"<h1 style='text-align: center'> arXiv papers related to datasets</h1> \n\n"
)
results += f"Number of results: {number_of_results}\n\n"
results += "\n\n<br>".join(df["markdown"].tolist())
return results
scheduler = BackgroundScheduler()
scheduler.add_job(prepare_data, "cron", hour=3, minute=30)
scheduler.start()
description = """This Space shows recent papers on arXiv that are *likely* to be papers introducing new datasets related to machine learning. \n\n
The Space works by:
- searching for papers on arXiv with the term `dataset` in the title + "machine learning" in the abstract
- passing the abstract and title of the papers to a machine learning model that predicts if the paper is introducing a new dataset or not
This Space is a work in progress. The model is not perfect, and the search query is not perfect. If you have suggestions for how to improve this Space, please open a Discussion.\n\n"""
with gr.Blocks() as demo:
gr.Markdown(
"<h1 style='text-align: center'> ✨New Datasets in Machine Learning "
" ✨ </h1>"
)
gr.Markdown(description)
with gr.Row():
broad_categories = gr.Dropdown(
choices=broad_categories,
label="Broad arXiv Category",
multiselect=True,
value="cs",
size="sm",
)
with gr.Accordion("Advanced Options", open=False):
gr.Markdown(
"Narrow by arXiv categories. **Note** this will take precedence over the"
" broad category selection."
)
narrow_categories = gr.Dropdown(
choices=all_possible_arxiv_categories,
value=None,
multiselect=True,
label="Narrow arXiv Category",
)
gr.ClearButton(narrow_categories, "Clear Narrow Categories", size="sm")
with gr.Row():
new_only = gr.Checkbox(True, label="New Datasets Only", size="sm")
results = gr.Markdown(create_markdown_summary())
broad_categories.change(
create_markdown_summary,
inputs=[broad_categories, new_only, narrow_categories],
outputs=results,
)
narrow_categories.change(
create_markdown_summary,
inputs=[broad_categories, new_only, narrow_categories],
outputs=results,
)
new_only.change(
create_markdown_summary,
[broad_categories, new_only, narrow_categories],
results,
)
demo.launch()
|