Spaces:
Runtime error
Runtime error
File size: 3,680 Bytes
703dffd d56a645 703dffd 439d0c0 703dffd 263c06c 703dffd 263c06c 703dffd 4789079 703dffd 4789079 703dffd 4789079 703dffd cde3f2b 8b4727e 703dffd cde3f2b 8b4727e 703dffd f70c67c 703dffd 2fd55a0 703dffd 058d3f8 703dffd b54cb8f 703dffd 00785bd 703dffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import gradio as gr
from huggingface_hub import list_spaces
from cachetools import TTLCache, cached
from toolz import groupby, valmap
@cached(cache=TTLCache(maxsize=100, ttl=60 * 10))
def get_spaces():
return list(list_spaces(full=True, limit=None))
get_spaces() # to warm up the cache
def create_space_to_like_dict():
spaces = get_spaces()
return {space.id: space.likes for space in spaces}
def create_org_to_like_dict():
spaces = get_spaces()
grouped = groupby(lambda x: x.author, spaces)
return valmap(lambda x: sum(s.likes for s in x), grouped)
def relative_rank(my_dict, target_key, filter_zero=False):
if filter_zero:
my_dict = {k: v for k, v in my_dict.items() if v != 0}
if target_key not in my_dict:
raise gr.Error(f"'{target_key}' not found lease check the ID and try again.")
sorted_items = sorted(my_dict.items(), key=lambda item: item[1], reverse=True)
position = [key for key, _ in sorted_items].index(target_key)
num_lower = len(sorted_items) - position - 1
num_higher = position
return {
"rank": (num_higher + 1) / len(my_dict) * 100,
"num_higher": num_higher,
"num_lower": num_lower,
}
@cached(cache=TTLCache(maxsize=100, ttl=60 * 3))
def relative_rank_for_space(space_id, filter_zero=False):
space_to_like_dict = create_space_to_like_dict()
return relative_rank(space_to_like_dict, space_id, filter_zero=filter_zero)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 3))
def relative_rank_for_org(org_id, filter_zero=False):
org_to_like_dict = create_org_to_like_dict()
return relative_rank(org_to_like_dict, org_id, filter_zero=filter_zero)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 3))
def rank_space(space_id):
return relative_rank_for_space(space_id)
def rank_space_and_org(space_or_org_id, filter_zero):
filter_zero = filter_zero == "yes"
split = space_or_org_id.split("/")
if len(split) == 2:
space_rank = relative_rank_for_space(space_or_org_id, filter_zero=filter_zero)
return f"""Space [{space_or_org_id}](https://huggingface.co/spaces/{space_or_org_id}) is ranked {space_rank['rank']:.2f}%
with {space_rank['num_higher']:,} Spaces above and {space_rank['num_lower']:,} Spaces below in the raking of Space likes"""
if len(split) == 1:
org_rank = relative_rank_for_org(space_or_org_id, filter_zero=filter_zero)
return f"""Organization or user [{space_or_org_id}](https://huggingface.co/{space_or_org_id}) is ranked {org_rank['rank']:.2f}%
with {org_rank['num_higher']:,} orgs/users above and {org_rank['num_lower']:,} orgs/users below in the raking of Space likes"""
with gr.Blocks() as demo:
gr.HTML("<h1 style='text-align: center;'> 🏆 HuggyRanker 🏆 </h1>")
gr.HTML(
"""<p style='text-align: center;'>Rank a single Space or all of the Spaces created by an organization or user by likes</p>"""
)
gr.HTML(
"""<p style="text-align: center;"><i>Remember likes aren't everything!</i></p>"""
)
gr.Markdown(
"""## Rank Spaces
Provide this app with a Space ID or a Username/Organization name to rank by likes.""")
with gr.Row():
space_id = gr.Textbox("librarian-bots", max_lines=1, label="Space or user/organization ID")
filter_zero = gr.Radio(
choices=["no", "yes"],
label="Filter out spaces with 0 likes in the ranking?",
value="yes",
)
run_btn = gr.Button("Rank Space!", label="Rank Space")
result = gr.Markdown()
run_btn.click(rank_space_and_org, inputs=[space_id, filter_zero], outputs=result)
demo.launch()
|