File size: 13,972 Bytes
cdd6c01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
"""Core part of LaDeco v2
Example usage:
>>> from core import Ladeco
>>> from PIL import Image
>>> from pathlib import Path
>>>
>>> # predict
>>> ldc = Ladeco()
>>> imgs = (thing for thing in Path("example").glob("*.jpg"))
>>> out = ldc.predict(imgs)
>>>
>>> # output - visualization
>>> segs = out.visualize(level=2)
>>> segs[0].image.show()
>>>
>>> # output - element area
>>> area = out.area()
>>> area[0]
{"fid": "example/.jpg", "l1_nature": 0.673, "l1_man_made": 0.241, ...}
"""
from matplotlib.patches import Rectangle
from pathlib import Path
from PIL import Image
from transformers import AutoModelForUniversalSegmentation, AutoProcessor
import math
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import torch
from functools import lru_cache
from matplotlib.figure import Figure
import numpy.typing as npt
from typing import Iterable, NamedTuple, Generator
from tqdm import tqdm
class LadecoVisualization(NamedTuple):
filename: str
image: Figure
class Ladeco:
def __init__(self,
model_name: str = "shi-labs/oneformer_ade20k_swin_large",
area_threshold: float = 0.01,
device: str | None = None,
):
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = AutoModelForUniversalSegmentation.from_pretrained(model_name).to(self.device)
self.area_threshold = area_threshold
self.ade20k_labels = {
name.strip(): int(idx)
for name, idx in self.model.config.label2id.items()
}
self.ladeco2ade20k: dict[str, tuple[int]] = _get_ladeco_labels(self.ade20k_labels)
def predict(
self, image_paths: str | Path | Iterable[str | Path], show_progress: bool = False
) -> "LadecoOutput":
if isinstance(image_paths, (str, Path)):
imgpaths = [image_paths]
else:
imgpaths = list(image_paths)
images = (
Image.open(img_path).convert("RGB")
for img_path in imgpaths
)
# batch inference functionality of OneFormer is broken
masks: list[torch.Tensor] = []
for img in tqdm(images, total=len(imgpaths), desc="Segmenting", disable=not show_progress):
samples = self.processor(
images=img, task_inputs=["semantic"], return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**samples)
masks.append(
self.processor.post_process_semantic_segmentation(outputs)[0]
)
return LadecoOutput(imgpaths, masks, self.ladeco2ade20k, self.area_threshold)
class LadecoOutput:
def __init__(
self,
filenames: list[str | Path],
masks: torch.Tensor,
ladeco2ade: dict[str, tuple[int]],
threshold: float,
):
self.filenames = filenames
self.masks = masks
self.ladeco2ade: dict[str, tuple[int]] = ladeco2ade
self.ade2ladeco: dict[int, str] = {
idx: label
for label, indices in self.ladeco2ade.items()
for idx in indices
}
self.threshold = threshold
def visualize(self, level: int) -> list[LadecoVisualization]:
return list(self.ivisualize(level))
def ivisualize(self, level: int) -> Generator[LadecoVisualization, None, None]:
colormaps = self.color_map(level)
labelnames = [name for name in self.ladeco2ade if name.startswith(f"l{level}")]
for fname, mask in zip(self.filenames, self.masks):
size = mask.shape + (3,) # (H, W, RGB)
vis = torch.zeros(size, dtype=torch.uint8)
for name in labelnames:
for idx in self.ladeco2ade[name]:
color = torch.tensor(colormaps[name] * 255, dtype=torch.uint8)
vis[mask == idx] = color
with Image.open(fname) as img:
target_size = img.size
vis = Image.fromarray(vis.numpy(), mode="RGB").resize(target_size)
fig, ax = plt.subplots()
ax.imshow(vis)
ax.axis('off')
yield LadecoVisualization(filename=str(fname), image=fig)
def area(self) -> list[dict[str, float | str]]:
return list(self.iarea())
def iarea(self) -> Generator[dict[str, float | str], None, None]:
n_label_ADE20k = 150
for filename, mask in zip(self.filenames, self.masks):
ade_ratios = torch.tensor([(mask == i).count_nonzero() / mask.numel() for i in range(n_label_ADE20k)])
#breakpoint()
ldc_ratios: dict[str, float] = {
label: round(ade_ratios[list(ade_indices)].sum().item(), 4)
for label, ade_indices in self.ladeco2ade.items()
}
ldc_ratios: dict[str, float] = {
label: 0 if ratio < self.threshold else ratio
for label, ratio in ldc_ratios.items()
}
others = round(1 - ldc_ratios["l1_nature"] - ldc_ratios["l1_man_made"], 4)
nfi = round(ldc_ratios["l1_nature"]/ (ldc_ratios["l1_nature"] + ldc_ratios.get("l1_man_made", 0) + 1e-6), 4)
yield {
"fid": str(filename), **ldc_ratios, "others": others, "LC_NFI": nfi,
}
def color_map(self, level: int) -> dict[str, npt.NDArray[np.float64]]:
"returns {'label_name': (R, G, B), ...}, where (R, G, B) in range [0, 1]"
labels = [
name for name in self.ladeco2ade.keys() if name.startswith(f"l{level}")
]
if len(labels) == 0:
raise RuntimeError(
f"LaDeco only has 4 levels in 1, 2, 3, 4. You assigned {level}."
)
colormap = mpl.colormaps["viridis"].resampled(len(labels)).colors[:, :-1]
# [:, :-1]: discard alpha channel
return {name: color for name, color in zip(labels, colormap)}
def color_legend(self, level: int) -> Figure:
colors = self.color_map(level)
match level:
case 1:
ncols = 1
case 2:
ncols = 1
case 3:
ncols = 2
case 4:
ncols = 5
cell_width = 212
cell_height = 22
swatch_width = 48
margin = 12
nrows = math.ceil(len(colors) / ncols)
width = cell_width * ncols + 2 * margin
height = cell_height * nrows + 2 * margin
dpi = 72
fig, ax = plt.subplots(figsize=(width / dpi, height / dpi), dpi=dpi)
fig.subplots_adjust(margin/width, margin/height,
(width-margin)/width, (height-margin*2)/height)
ax.set_xlim(0, cell_width * ncols)
ax.set_ylim(cell_height * (nrows-0.5), -cell_height/2.)
ax.yaxis.set_visible(False)
ax.xaxis.set_visible(False)
ax.set_axis_off()
for i, name in enumerate(colors):
row = i % nrows
col = i // nrows
y = row * cell_height
swatch_start_x = cell_width * col
text_pos_x = cell_width * col + swatch_width + 7
ax.text(text_pos_x, y, name, fontsize=14,
horizontalalignment='left',
verticalalignment='center')
ax.add_patch(
Rectangle(xy=(swatch_start_x, y-9), width=swatch_width,
height=18, facecolor=colors[name], edgecolor='0.7')
)
ax.set_title(f"LaDeco Color Legend - Level {level}")
return fig
def _get_ladeco_labels(ade20k: dict[str, int]) -> dict[str, tuple[int]]:
labels = {
# level 4 labels
# under l3_architecture
"l4_hovel": (ade20k["hovel, hut, hutch, shack, shanty"],),
"l4_building": (ade20k["building"], ade20k["house"]),
"l4_skyscraper": (ade20k["skyscraper"],),
"l4_tower": (ade20k["tower"],),
# under l3_archi_parts
"l4_step": (ade20k["step, stair"],),
"l4_canopy": (ade20k["awning, sunshade, sunblind"], ade20k["canopy"]),
"l4_arcade": (ade20k["arcade machine"],),
"l4_door": (ade20k["door"],),
"l4_window": (ade20k["window"],),
"l4_wall": (ade20k["wall"],),
# under l3_roadway
"l4_stairway": (ade20k["stairway, staircase"],),
"l4_sidewalk": (ade20k["sidewalk, pavement"],),
"l4_road": (ade20k["road, route"],),
# under l3_furniture
"l4_sculpture": (ade20k["sculpture"],),
"l4_flag": (ade20k["flag"],),
"l4_can": (ade20k["trash can"],),
"l4_chair": (ade20k["chair"],),
"l4_pot": (ade20k["pot"],),
"l4_booth": (ade20k["booth"],),
"l4_streetlight": (ade20k["street lamp"],),
"l4_bench": (ade20k["bench"],),
"l4_fence": (ade20k["fence"],),
"l4_table": (ade20k["table"],),
# under l3_vehicle
"l4_bike": (ade20k["bicycle"],),
"l4_motorbike": (ade20k["minibike, motorbike"],),
"l4_van": (ade20k["van"],),
"l4_truck": (ade20k["truck"],),
"l4_bus": (ade20k["bus"],),
"l4_car": (ade20k["car"],),
# under l3_sign
"l4_traffic_sign": (ade20k["traffic light"],),
"l4_poster": (ade20k["poster, posting, placard, notice, bill, card"],),
"l4_signboard": (ade20k["signboard, sign"],),
# under l3_vert_land
"l4_rock": (ade20k["rock, stone"],),
"l4_hill": (ade20k["hill"],),
"l4_mountain": (ade20k["mountain, mount"],),
# under l3_hori_land
"l4_ground": (ade20k["earth, ground"], ade20k["land, ground, soil"]),
"l4_field": (ade20k["field"],),
"l4_sand": (ade20k["sand"],),
"l4_dirt": (ade20k["dirt track"],),
"l4_path": (ade20k["path"],),
# under l3_flower
"l4_flower": (ade20k["flower"],),
# under l3_grass
"l4_grass": (ade20k["grass"],),
# under l3_shrub
"l4_flora": (ade20k["plant"],),
# under l3_arbor
"l4_tree": (ade20k["tree"],),
"l4_palm": (ade20k["palm, palm tree"],),
# under l3_hori_water
"l4_lake": (ade20k["lake"],),
"l4_pool": (ade20k["pool"],),
"l4_river": (ade20k["river"],),
"l4_sea": (ade20k["sea"],),
"l4_water": (ade20k["water"],),
# under l3_vert_water
"l4_fountain": (ade20k["fountain"],),
"l4_waterfall": (ade20k["falls"],),
# under l3_human
"l4_person": (ade20k["person"],),
# under l3_animal
"l4_animal": (ade20k["animal"],),
# under l3_sky
"l4_sky": (ade20k["sky"],),
}
labels = labels | {
# level 3 labels
# under l2_landform
"l3_hori_land": labels["l4_ground"] + labels["l4_field"] + labels["l4_sand"] + labels["l4_dirt"] + labels["l4_path"],
"l3_vert_land": labels["l4_mountain"] + labels["l4_hill"] + labels["l4_rock"],
# under l2_vegetation
"l3_woody_plant": labels["l4_tree"] + labels["l4_palm"] + labels["l4_flora"],
"l3_herb_plant": labels["l4_grass"],
"l3_flower": labels["l4_flower"],
# under l2_water
"l3_hori_water": labels["l4_water"] + labels["l4_sea"] + labels["l4_river"] + labels["l4_pool"] + labels["l4_lake"],
"l3_vert_water": labels["l4_fountain"] + labels["l4_waterfall"],
# under l2_bio
"l3_human": labels["l4_person"],
"l3_animal": labels["l4_animal"],
# under l2_sky
"l3_sky": labels["l4_sky"],
# under l2_archi
"l3_architecture": labels["l4_building"] + labels["l4_hovel"] + labels["l4_tower"] + labels["l4_skyscraper"],
"l3_archi_parts": labels["l4_wall"] + labels["l4_window"] + labels["l4_door"] + labels["l4_arcade"] + labels["l4_canopy"] + labels["l4_step"],
# under l2_street
"l3_roadway": labels["l4_road"] + labels["l4_sidewalk"] + labels["l4_stairway"],
"l3_furniture": labels["l4_table"] + labels["l4_chair"] + labels["l4_fence"] + labels["l4_bench"] + labels["l4_streetlight"] + labels["l4_booth"] + labels["l4_pot"] + labels["l4_can"] + labels["l4_flag"] + labels["l4_sculpture"],
"l3_vehicle": labels["l4_car"] + labels["l4_bus"] + labels["l4_truck"] + labels["l4_van"] + labels["l4_motorbike"] + labels["l4_bike"],
"l3_sign": labels["l4_signboard"] + labels["l4_poster"] + labels["l4_traffic_sign"],
}
labels = labels | {
# level 2 labels
# under l1_nature
"l2_landform": labels["l3_hori_land"] + labels["l3_vert_land"],
"l2_vegetation": labels["l3_woody_plant"] + labels["l3_herb_plant"] + labels["l3_flower"],
"l2_water": labels["l3_hori_water"] + labels["l3_vert_water"],
"l2_bio": labels["l3_human"] + labels["l3_animal"],
"l2_sky": labels["l3_sky"],
# under l1_man_made
"l2_archi": labels["l3_architecture"] + labels["l3_archi_parts"],
"l2_street": labels["l3_roadway"] + labels["l3_furniture"] + labels["l3_vehicle"] + labels["l3_sign"],
}
labels = labels | {
# level 1 labels
"l1_nature": labels["l2_landform"] + labels["l2_vegetation"] + labels["l2_water"] + labels["l2_bio"] + labels["l2_sky"],
"l1_man_made": labels["l2_archi"] + labels["l2_street"],
}
return labels
if __name__ == "__main__":
ldc = Ladeco()
image = Path("images") / "canyon_3011_00002354.jpg"
out = ldc.predict(image)
|