File size: 2,019 Bytes
fae8d2c
355e96e
2b36db2
 
fae8d2c
 
2b36db2
ff7e22a
f70d5f1
ff7e22a
 
 
 
 
 
 
 
 
f70d5f1
355e96e
fae8d2c
c53e7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355e96e
ff7e22a
 
 
 
 
355e96e
fae8d2c
355e96e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient()
from gradio_imageslider import ImageSlider


def refine_image(image, prompt, negative_prompt, num_inference_steps, guidance_scale, seed, strength):
    refined_image = client.image_to_image(
        image, 
        prompt=prompt, 
        negative_prompt=negative_prompt, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale, 
        seed=seed, 
        model="stabilityai/stable-diffusion-xl-refiner-1.0",
        strength=strength
    )
    return [image, refined_image]

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            image = gr.Image(type="filepath")
            prompt = gr.Textbox(lines=3, label="Prompt")
            negative_prompt = gr.Textbox(lines=3, label="Negative Prompt")
            strength = gr.Slider(
                label="Strength",
                minimum=0,
                maximum=300,
                step=0.01,
                value=1
            )
            num_inference_steps = gr.Slider(
                label="Inference steps",
                minimum=3,
                maximum=150,
                step=1,
                value=25
            )
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=50.0,
                step=0.1,
                value=12
            )
            seed = gr.Slider(
                label="Seed",
                info="-1 denotes a random seed",
                minimum=-1,
                maximum=423538377342,
                step=1,
                value=-1
            )
            refine_btn = gr.Button("Refine")
        with gr.Column():
            output = ImageSlider(label="Before / After")

    refine_btn.click(
        refine_image, 
        inputs=[image, prompt, negative_prompt, num_inference_steps, guidance_scale, seed, strength], 
        outputs=output
    )

demo.launch()