Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,135 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
def respond(
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
"""
|
7 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
8 |
"""
|
9 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
+
model_id = "GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
14 |
|
15 |
+
# def respond(
|
16 |
+
# message,
|
17 |
+
# history: list[tuple[str, str]],
|
18 |
+
# system_message,
|
19 |
+
# max_tokens,
|
20 |
+
# temperature,
|
21 |
+
# top_p,
|
22 |
+
# ):
|
23 |
+
# messages = [{"role": "system", "content": system_message}]
|
24 |
|
25 |
+
# for val in history:
|
26 |
+
# if val[0]:
|
27 |
+
# messages.append({"role": "user", "content": val[0]})
|
28 |
+
# if val[1]:
|
29 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
30 |
|
31 |
+
# messages.append({"role": "user", "content": message})
|
32 |
|
33 |
+
# response = ""
|
34 |
|
35 |
+
# for message in client.chat_completion(
|
36 |
+
# messages,
|
37 |
+
# max_tokens=max_tokens,
|
38 |
+
# stream=True,
|
39 |
+
# temperature=temperature,
|
40 |
+
# top_p=top_p,
|
41 |
+
# ):
|
42 |
+
# token = message.choices[0].delta.content
|
43 |
|
44 |
+
# response += token
|
45 |
+
# yield response
|
46 |
|
47 |
|
48 |
+
# """
|
49 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
50 |
+
# """
|
51 |
+
# demo = gr.ChatInterface(
|
52 |
+
# respond,
|
53 |
+
# additional_inputs=[
|
54 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
55 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
56 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
57 |
+
# gr.Slider(
|
58 |
+
# minimum=0.1,
|
59 |
+
# maximum=1.0,
|
60 |
+
# value=0.95,
|
61 |
+
# step=0.05,
|
62 |
+
# label="Top-p (nucleus sampling)",
|
63 |
+
# ),
|
64 |
+
# ],
|
65 |
+
# )
|
66 |
+
|
67 |
+
|
68 |
+
# if __name__ == "__main__":
|
69 |
+
# demo.launch()
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
# Function to generate text
|
74 |
+
def generate_text(prompt, max_length=100):
|
75 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
76 |
+
outputs = model.generate(
|
77 |
+
**inputs,
|
78 |
+
max_length=max_length,
|
79 |
+
num_return_sequences=1,
|
80 |
+
no_repeat_ngram_size=2,
|
81 |
+
do_sample=True,
|
82 |
+
top_p=0.95,
|
83 |
+
temperature=0.7
|
84 |
+
)
|
85 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
86 |
+
|
87 |
+
# Gradio frontend
|
88 |
+
def gradio_interface(prompt, max_length):
|
89 |
+
if not prompt.strip():
|
90 |
+
return "Please enter a prompt."
|
91 |
+
try:
|
92 |
+
output = generate_text(prompt, max_length=max_length)
|
93 |
+
return output
|
94 |
+
except Exception as e:
|
95 |
+
return f"An error occurred: {str(e)}"
|
96 |
+
|
97 |
+
# Define Gradio components
|
98 |
+
with gr.Blocks() as demo:
|
99 |
+
gr.Markdown("# LLaMA3 8B CPT Sahabatai Instruct")
|
100 |
+
gr.Markdown("Generate text using the **LLaMA3 8B CPT Sahabatai Instruct** model.")
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column():
|
104 |
+
prompt_input = gr.Textbox(
|
105 |
+
label="Enter your prompt",
|
106 |
+
placeholder="Type something...",
|
107 |
+
lines=3,
|
108 |
+
)
|
109 |
+
max_length_slider = gr.Slider(
|
110 |
+
label="Max Length",
|
111 |
+
minimum=10,
|
112 |
+
maximum=200,
|
113 |
+
value=100,
|
114 |
+
step=10,
|
115 |
+
)
|
116 |
+
generate_button = gr.Button("Generate")
|
117 |
+
|
118 |
+
with gr.Column():
|
119 |
+
output_text = gr.Textbox(
|
120 |
+
label="Generated Text",
|
121 |
+
lines=10,
|
122 |
+
interactive=False,
|
123 |
+
)
|
124 |
+
|
125 |
+
# Link the button to the function
|
126 |
+
generate_button.click(
|
127 |
+
fn=gradio_interface,
|
128 |
+
inputs=[prompt_input, max_length_slider],
|
129 |
+
outputs=output_text,
|
130 |
+
)
|
131 |
|
132 |
+
# Launch the Gradio app
|
133 |
|
134 |
if __name__ == "__main__":
|
135 |
demo.launch()
|