videomae-vis / src /models.py
SauravMaheshkar's picture
chore: refactor src
1d4cc3a unverified
raw
history blame
21.9 kB
from functools import partial
from typing import Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
from src.augmentations import TubeMaskingGenerator
__all__ = ["load_model"]
def _cfg(url="", **kwargs):
return {
"url": url,
"num_classes": 400,
"input_size": (3, 224, 224),
"pool_size": None,
"crop_pct": 0.9,
"interpolation": "bicubic",
"mean": (0.5, 0.5, 0.5),
"std": (0.5, 0.5, 0.5),
**kwargs,
}
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
attn_head_dim=None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(
self.q_bias,
torch.zeros_like(self.v_bias, requires_grad=False),
self.v_bias,
)
)
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
attn_head_dim=None,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
attn_head_dim=attn_head_dim,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
if init_values > 0:
self.gamma_1 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True
)
self.gamma_2 = nn.Parameter(
init_values * torch.ones((dim)), requires_grad=True
)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x):
if self.gamma_1 is None:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
num_frames=16,
tubelet_size=2,
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.tubelet_size = int(tubelet_size)
num_patches = (
(img_size[1] // patch_size[1])
* (img_size[0] // patch_size[0])
* (num_frames // self.tubelet_size)
)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv3d(
in_channels=in_chans,
out_channels=embed_dim,
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
stride=(self.tubelet_size, patch_size[0], patch_size[1]),
)
def forward(self, x, **kwargs):
B, C, T, H, W = x.shape
# FIXME look at relaxing size constraints
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
def get_sinusoid_encoding_table(n_position, d_hid):
def get_position_angle_vec(position):
return [
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos_i) for pos_i in range(n_position)]
)
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.tensor(
sinusoid_table, dtype=torch.float, requires_grad=False
).unsqueeze(0)
class PretrainVisionTransformerEncoder(nn.Module):
"""Vision Transformer with support for patch or hybrid CNN input stage"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=0,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
init_values=None,
tubelet_size=2,
use_checkpoint=False,
use_learnable_pos_emb=False,
):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = (
embed_dim # num_features for consistency with other models
)
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
tubelet_size=tubelet_size,
)
num_patches = self.patch_embed.num_patches
self.use_checkpoint = use_checkpoint
# TODO: Add the cls token
if use_learnable_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
# sine-cosine positional embeddings
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
)
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
self.head = (
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
if use_learnable_pos_emb:
trunc_normal_(self.pos_embed, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=""):
self.num_classes = num_classes
self.head = (
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
def forward_features(self, x, mask):
_, _, T, _, _ = x.shape
x = self.patch_embed(x)
x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
B, _, C = x.shape
x_vis = x[~mask].reshape(B, -1, C) # ~mask means visible
if self.use_checkpoint:
for blk in self.blocks:
x_vis = checkpoint.checkpoint(blk, x_vis)
else:
for blk in self.blocks:
x_vis = blk(x_vis)
x_vis = self.norm(x_vis)
return x_vis
def forward(self, x, mask):
x = self.forward_features(x, mask)
x = self.head(x)
return x
class PretrainVisionTransformerDecoder(nn.Module):
"""Vision Transformer with support for patch or hybrid CNN input stage"""
def __init__(
self,
patch_size=16,
num_classes=768,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
init_values=None,
num_patches=196,
tubelet_size=2,
use_checkpoint=False,
):
super().__init__()
self.num_classes = num_classes
assert num_classes == 3 * tubelet_size * patch_size**2
self.num_features = self.embed_dim = (
embed_dim # num_features for consistency with other models
)
self.patch_size = patch_size
self.use_checkpoint = use_checkpoint
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
)
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
self.head = (
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=""):
self.num_classes = num_classes
self.head = (
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
def forward(self, x, return_token_num):
if self.use_checkpoint:
for blk in self.blocks:
x = checkpoint.checkpoint(blk, x)
else:
for blk in self.blocks:
x = blk(x)
if return_token_num > 0:
x = self.head(
self.norm(x[:, -return_token_num:])
) # only return the mask tokens predict pixels
else:
x = self.head(self.norm(x))
return x
class PretrainVisionTransformer(nn.Module):
"""Vision Transformer with support for patch or hybrid CNN input stage"""
def __init__(
self,
img_size=224,
patch_size=16,
encoder_in_chans=3,
encoder_num_classes=0,
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
decoder_num_classes=1536, # decoder_num_classes=768,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=8,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
init_values=0.0,
use_learnable_pos_emb=False,
use_checkpoint=False,
tubelet_size=2,
num_classes=0, # avoid the error from create_fn in timm
in_chans=0, # avoid the error from create_fn in timm
):
super().__init__()
self.encoder = PretrainVisionTransformerEncoder(
img_size=img_size,
patch_size=patch_size,
in_chans=encoder_in_chans,
num_classes=encoder_num_classes,
embed_dim=encoder_embed_dim,
depth=encoder_depth,
num_heads=encoder_num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
init_values=init_values,
tubelet_size=tubelet_size,
use_checkpoint=use_checkpoint,
use_learnable_pos_emb=use_learnable_pos_emb,
)
self.decoder = PretrainVisionTransformerDecoder(
patch_size=patch_size,
num_patches=self.encoder.patch_embed.num_patches,
num_classes=decoder_num_classes,
embed_dim=decoder_embed_dim,
depth=decoder_depth,
num_heads=decoder_num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
init_values=init_values,
tubelet_size=tubelet_size,
use_checkpoint=use_checkpoint,
)
self.encoder_to_decoder = nn.Linear(
encoder_embed_dim, decoder_embed_dim, bias=False
)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.pos_embed = get_sinusoid_encoding_table(
self.encoder.patch_embed.num_patches, decoder_embed_dim
)
trunc_normal_(self.mask_token, std=0.02)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token", "mask_token"}
def forward(self, x, mask):
_, _, T, _, _ = x.shape
x_vis = self.encoder(x, mask) # [B, N_vis, C_e]
x_vis = self.encoder_to_decoder(x_vis) # [B, N_vis, C_d]
B, N, C = x_vis.shape
# we don't unshuffle the correct visible token order,
# but shuffle the pos embedding accorddingly.
expand_pos_embed = (
self.pos_embed.expand(B, -1, -1).type_as(x).to(x.device).clone().detach()
)
pos_emd_vis = expand_pos_embed[~mask].reshape(B, -1, C)
pos_emd_mask = expand_pos_embed[mask].reshape(B, -1, C)
x_full = torch.cat(
[x_vis + pos_emd_vis, self.mask_token + pos_emd_mask], dim=1
) # [B, N, C_d]
x = self.decoder(x_full, pos_emd_mask.shape[1]) # [B, N_mask, 3 * 16 * 16]
return x
def pretrain_videomae_small_patch16_224(pretrained=False, **kwargs):
model = PretrainVisionTransformer(
img_size=224,
patch_size=16,
encoder_embed_dim=384,
encoder_depth=12,
encoder_num_heads=6,
encoder_num_classes=0,
decoder_num_classes=1536,
decoder_embed_dim=192,
decoder_num_heads=3,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
def pretrain_videomae_base_patch16_224(pretrained=False, **kwargs):
model = PretrainVisionTransformer(
img_size=224,
patch_size=16,
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_num_classes=0,
decoder_num_classes=1536,
decoder_embed_dim=384,
decoder_num_heads=6,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
def pretrain_videomae_large_patch16_224(pretrained=False, **kwargs):
model = PretrainVisionTransformer(
img_size=224,
patch_size=16,
encoder_embed_dim=1024,
encoder_depth=24,
encoder_num_heads=16,
encoder_num_classes=0,
decoder_num_classes=1536,
decoder_embed_dim=512,
decoder_num_heads=8,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
def pretrain_videomae_huge_patch16_224(pretrained=False, **kwargs):
model = PretrainVisionTransformer(
img_size=224,
patch_size=16,
encoder_embed_dim=1280,
encoder_depth=32,
encoder_num_heads=16,
encoder_num_classes=0,
decoder_num_classes=1536,
decoder_embed_dim=640,
decoder_num_heads=8,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu")
model.load_state_dict(checkpoint["model"])
return model
def load_model(
path: str,
mask_ratio: float,
device: "torch.device",
num_frames: int = 16,
input_size: int = 224,
) -> Tuple[torch.nn.Module, torch.Tensor, Tuple[int, ...]]:
model = pretrain_videomae_base_patch16_224(
pretrained=False, drop_path_rate=0.0, decoder_depth=4
).to(device)
patch_size = model.encoder.patch_embed.patch_size
window_size = (
num_frames // 2,
input_size // patch_size[0],
input_size // patch_size[1],
)
weights = torch.load(path, map_location="cpu")
model.load_state_dict(weights["model"])
model.eval()
masked_generator = TubeMaskingGenerator(window_size, mask_ratio)
masks = torch.from_numpy(masked_generator())
return model, masks, patch_size