Spaces:
Running
Running
from functools import partial | |
from typing import Tuple | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ | |
from src.augmentations import TubeMaskingGenerator | |
__all__ = ["load_model"] | |
def _cfg(url="", **kwargs): | |
return { | |
"url": url, | |
"num_classes": 400, | |
"input_size": (3, 224, 224), | |
"pool_size": None, | |
"crop_pct": 0.9, | |
"interpolation": "bicubic", | |
"mean": (0.5, 0.5, 0.5), | |
"std": (0.5, 0.5, 0.5), | |
**kwargs, | |
} | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
# x = self.drop(x) | |
# commit this for the orignal BERT implement | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
attn_head_dim=None, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
if attn_head_dim is not None: | |
head_dim = attn_head_dim | |
all_head_dim = head_dim * self.num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) | |
if qkv_bias: | |
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
else: | |
self.q_bias = None | |
self.v_bias = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(all_head_dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv_bias = None | |
if self.q_bias is not None: | |
qkv_bias = torch.cat( | |
( | |
self.q_bias, | |
torch.zeros_like(self.v_bias, requires_grad=False), | |
self.v_bias, | |
) | |
) | |
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = ( | |
qkv[0], | |
qkv[1], | |
qkv[2], | |
) # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
init_values=None, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
attn_head_dim=None, | |
): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
attn_head_dim=attn_head_dim, | |
) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
) | |
if init_values > 0: | |
self.gamma_1 = nn.Parameter( | |
init_values * torch.ones((dim)), requires_grad=True | |
) | |
self.gamma_2 = nn.Parameter( | |
init_values * torch.ones((dim)), requires_grad=True | |
) | |
else: | |
self.gamma_1, self.gamma_2 = None, None | |
def forward(self, x): | |
if self.gamma_1 is None: | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
else: | |
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
"""Image to Patch Embedding""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
num_frames=16, | |
tubelet_size=2, | |
): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.tubelet_size = int(tubelet_size) | |
num_patches = ( | |
(img_size[1] // patch_size[1]) | |
* (img_size[0] // patch_size[0]) | |
* (num_frames // self.tubelet_size) | |
) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv3d( | |
in_channels=in_chans, | |
out_channels=embed_dim, | |
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), | |
stride=(self.tubelet_size, patch_size[0], patch_size[1]), | |
) | |
def forward(self, x, **kwargs): | |
B, C, T, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
assert ( | |
H == self.img_size[0] and W == self.img_size[1] | |
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
def get_sinusoid_encoding_table(n_position, d_hid): | |
def get_position_angle_vec(position): | |
return [ | |
position / np.power(10000, 2 * (hid_j // 2) / d_hid) | |
for hid_j in range(d_hid) | |
] | |
sinusoid_table = np.array( | |
[get_position_angle_vec(pos_i) for pos_i in range(n_position)] | |
) | |
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i | |
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 | |
return torch.tensor( | |
sinusoid_table, dtype=torch.float, requires_grad=False | |
).unsqueeze(0) | |
class PretrainVisionTransformerEncoder(nn.Module): | |
"""Vision Transformer with support for patch or hybrid CNN input stage""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
num_classes=0, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=nn.LayerNorm, | |
init_values=None, | |
tubelet_size=2, | |
use_checkpoint=False, | |
use_learnable_pos_emb=False, | |
): | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = ( | |
embed_dim # num_features for consistency with other models | |
) | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
tubelet_size=tubelet_size, | |
) | |
num_patches = self.patch_embed.num_patches | |
self.use_checkpoint = use_checkpoint | |
# TODO: Add the cls token | |
if use_learnable_pos_emb: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
else: | |
# sine-cosine positional embeddings | |
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim) | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
] # stochastic depth decay rule | |
self.blocks = nn.ModuleList( | |
[ | |
Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
init_values=init_values, | |
) | |
for i in range(depth) | |
] | |
) | |
self.norm = norm_layer(embed_dim) | |
self.head = ( | |
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
) | |
if use_learnable_pos_emb: | |
trunc_normal_(self.pos_embed, std=0.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def get_num_layers(self): | |
return len(self.blocks) | |
def no_weight_decay(self): | |
return {"pos_embed", "cls_token"} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=""): | |
self.num_classes = num_classes | |
self.head = ( | |
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
) | |
def forward_features(self, x, mask): | |
_, _, T, _, _ = x.shape | |
x = self.patch_embed(x) | |
x = x + self.pos_embed.type_as(x).to(x.device).clone().detach() | |
B, _, C = x.shape | |
x_vis = x[~mask].reshape(B, -1, C) # ~mask means visible | |
if self.use_checkpoint: | |
for blk in self.blocks: | |
x_vis = checkpoint.checkpoint(blk, x_vis) | |
else: | |
for blk in self.blocks: | |
x_vis = blk(x_vis) | |
x_vis = self.norm(x_vis) | |
return x_vis | |
def forward(self, x, mask): | |
x = self.forward_features(x, mask) | |
x = self.head(x) | |
return x | |
class PretrainVisionTransformerDecoder(nn.Module): | |
"""Vision Transformer with support for patch or hybrid CNN input stage""" | |
def __init__( | |
self, | |
patch_size=16, | |
num_classes=768, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=nn.LayerNorm, | |
init_values=None, | |
num_patches=196, | |
tubelet_size=2, | |
use_checkpoint=False, | |
): | |
super().__init__() | |
self.num_classes = num_classes | |
assert num_classes == 3 * tubelet_size * patch_size**2 | |
self.num_features = self.embed_dim = ( | |
embed_dim # num_features for consistency with other models | |
) | |
self.patch_size = patch_size | |
self.use_checkpoint = use_checkpoint | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
] # stochastic depth decay rule | |
self.blocks = nn.ModuleList( | |
[ | |
Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
init_values=init_values, | |
) | |
for i in range(depth) | |
] | |
) | |
self.norm = norm_layer(embed_dim) | |
self.head = ( | |
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def get_num_layers(self): | |
return len(self.blocks) | |
def no_weight_decay(self): | |
return {"pos_embed", "cls_token"} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=""): | |
self.num_classes = num_classes | |
self.head = ( | |
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
) | |
def forward(self, x, return_token_num): | |
if self.use_checkpoint: | |
for blk in self.blocks: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
for blk in self.blocks: | |
x = blk(x) | |
if return_token_num > 0: | |
x = self.head( | |
self.norm(x[:, -return_token_num:]) | |
) # only return the mask tokens predict pixels | |
else: | |
x = self.head(self.norm(x)) | |
return x | |
class PretrainVisionTransformer(nn.Module): | |
"""Vision Transformer with support for patch or hybrid CNN input stage""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
encoder_in_chans=3, | |
encoder_num_classes=0, | |
encoder_embed_dim=768, | |
encoder_depth=12, | |
encoder_num_heads=12, | |
decoder_num_classes=1536, # decoder_num_classes=768, | |
decoder_embed_dim=512, | |
decoder_depth=8, | |
decoder_num_heads=8, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=nn.LayerNorm, | |
init_values=0.0, | |
use_learnable_pos_emb=False, | |
use_checkpoint=False, | |
tubelet_size=2, | |
num_classes=0, # avoid the error from create_fn in timm | |
in_chans=0, # avoid the error from create_fn in timm | |
): | |
super().__init__() | |
self.encoder = PretrainVisionTransformerEncoder( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=encoder_in_chans, | |
num_classes=encoder_num_classes, | |
embed_dim=encoder_embed_dim, | |
depth=encoder_depth, | |
num_heads=encoder_num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
norm_layer=norm_layer, | |
init_values=init_values, | |
tubelet_size=tubelet_size, | |
use_checkpoint=use_checkpoint, | |
use_learnable_pos_emb=use_learnable_pos_emb, | |
) | |
self.decoder = PretrainVisionTransformerDecoder( | |
patch_size=patch_size, | |
num_patches=self.encoder.patch_embed.num_patches, | |
num_classes=decoder_num_classes, | |
embed_dim=decoder_embed_dim, | |
depth=decoder_depth, | |
num_heads=decoder_num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
norm_layer=norm_layer, | |
init_values=init_values, | |
tubelet_size=tubelet_size, | |
use_checkpoint=use_checkpoint, | |
) | |
self.encoder_to_decoder = nn.Linear( | |
encoder_embed_dim, decoder_embed_dim, bias=False | |
) | |
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim)) | |
self.pos_embed = get_sinusoid_encoding_table( | |
self.encoder.patch_embed.num_patches, decoder_embed_dim | |
) | |
trunc_normal_(self.mask_token, std=0.02) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def get_num_layers(self): | |
return len(self.blocks) | |
def no_weight_decay(self): | |
return {"pos_embed", "cls_token", "mask_token"} | |
def forward(self, x, mask): | |
_, _, T, _, _ = x.shape | |
x_vis = self.encoder(x, mask) # [B, N_vis, C_e] | |
x_vis = self.encoder_to_decoder(x_vis) # [B, N_vis, C_d] | |
B, N, C = x_vis.shape | |
# we don't unshuffle the correct visible token order, | |
# but shuffle the pos embedding accorddingly. | |
expand_pos_embed = ( | |
self.pos_embed.expand(B, -1, -1).type_as(x).to(x.device).clone().detach() | |
) | |
pos_emd_vis = expand_pos_embed[~mask].reshape(B, -1, C) | |
pos_emd_mask = expand_pos_embed[mask].reshape(B, -1, C) | |
x_full = torch.cat( | |
[x_vis + pos_emd_vis, self.mask_token + pos_emd_mask], dim=1 | |
) # [B, N, C_d] | |
x = self.decoder(x_full, pos_emd_mask.shape[1]) # [B, N_mask, 3 * 16 * 16] | |
return x | |
def pretrain_videomae_small_patch16_224(pretrained=False, **kwargs): | |
model = PretrainVisionTransformer( | |
img_size=224, | |
patch_size=16, | |
encoder_embed_dim=384, | |
encoder_depth=12, | |
encoder_num_heads=6, | |
encoder_num_classes=0, | |
decoder_num_classes=1536, | |
decoder_embed_dim=192, | |
decoder_num_heads=3, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs, | |
) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def pretrain_videomae_base_patch16_224(pretrained=False, **kwargs): | |
model = PretrainVisionTransformer( | |
img_size=224, | |
patch_size=16, | |
encoder_embed_dim=768, | |
encoder_depth=12, | |
encoder_num_heads=12, | |
encoder_num_classes=0, | |
decoder_num_classes=1536, | |
decoder_embed_dim=384, | |
decoder_num_heads=6, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs, | |
) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def pretrain_videomae_large_patch16_224(pretrained=False, **kwargs): | |
model = PretrainVisionTransformer( | |
img_size=224, | |
patch_size=16, | |
encoder_embed_dim=1024, | |
encoder_depth=24, | |
encoder_num_heads=16, | |
encoder_num_classes=0, | |
decoder_num_classes=1536, | |
decoder_embed_dim=512, | |
decoder_num_heads=8, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs, | |
) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def pretrain_videomae_huge_patch16_224(pretrained=False, **kwargs): | |
model = PretrainVisionTransformer( | |
img_size=224, | |
patch_size=16, | |
encoder_embed_dim=1280, | |
encoder_depth=32, | |
encoder_num_heads=16, | |
encoder_num_classes=0, | |
decoder_num_classes=1536, | |
decoder_embed_dim=640, | |
decoder_num_heads=8, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs, | |
) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def load_model( | |
path: str, | |
mask_ratio: float, | |
device: "torch.device", | |
num_frames: int = 16, | |
input_size: int = 224, | |
) -> Tuple[torch.nn.Module, torch.Tensor, Tuple[int, ...]]: | |
model = pretrain_videomae_base_patch16_224( | |
pretrained=False, drop_path_rate=0.0, decoder_depth=4 | |
).to(device) | |
patch_size = model.encoder.patch_embed.patch_size | |
window_size = ( | |
num_frames // 2, | |
input_size // patch_size[0], | |
input_size // patch_size[1], | |
) | |
weights = torch.load(path, map_location="cpu") | |
model.load_state_dict(weights["model"]) | |
model.eval() | |
masked_generator = TubeMaskingGenerator(window_size, mask_ratio) | |
masks = torch.from_numpy(masked_generator()) | |
return model, masks, patch_size | |