Spaces:
Running
Running
SauravMaheshkar
commited on
Commit
β’
65947b1
1
Parent(s):
38cb6ed
feat: initial commit
Browse files- .gitattributes +1 -0
- .pre-commit-config.yaml +10 -0
- README.md +22 -5
- app.py +53 -0
- assets/checkpoint.pth +3 -0
- assets/example.mp4 +3 -0
- augmentations.py +117 -0
- models.py +714 -0
- pyproject.toml +2 -0
- requirements.txt +6 -0
- utils.py +144 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/psf/black
|
3 |
+
rev: 24.4.2
|
4 |
+
hooks:
|
5 |
+
- id: black
|
6 |
+
- repo: https://github.com/pycqa/isort
|
7 |
+
rev: 5.13.2
|
8 |
+
hooks:
|
9 |
+
- id: isort
|
10 |
+
args: ["--profile", "black"]
|
README.md
CHANGED
@@ -1,13 +1,30 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: π
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: cc-by-4.0
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: VideoMAE Visualisation
|
3 |
emoji: π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: cc-by-4.0
|
11 |
+
short_description: Visualise outputs of VideoMAE
|
12 |
---
|
13 |
|
14 |
+
## References
|
15 |
+
|
16 |
+
Source Paper π: https://arxiv.org/abs/2203.12602
|
17 |
+
|
18 |
+
<details>
|
19 |
+
<summary>Citation</summary>
|
20 |
+
|
21 |
+
```lang-misc
|
22 |
+
@inproceedings{tong2022videomae,
|
23 |
+
title={Video{MAE}: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training},
|
24 |
+
author={Zhan Tong and Yibing Song and Jue Wang and Limin Wang},
|
25 |
+
booktitle={Advances in Neural Information Processing Systems},
|
26 |
+
year={2022}
|
27 |
+
}
|
28 |
+
```
|
29 |
+
|
30 |
+
</details>
|
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from augmentations import get_videomae_transform
|
5 |
+
from models import load_model
|
6 |
+
from utils import create_plot, get_frames, get_videomae_outputs, prepare_frames_masks
|
7 |
+
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
+
transform = get_videomae_transform()
|
11 |
+
|
12 |
+
|
13 |
+
def get_visualisations(mask_ratio, video_path):
|
14 |
+
frames, ids = get_frames(path=video_path, transform=transform)
|
15 |
+
|
16 |
+
model, masks, patch_size = load_model(
|
17 |
+
path="assets/checkpoint.pth",
|
18 |
+
mask_ratio=mask_ratio,
|
19 |
+
device=device,
|
20 |
+
)
|
21 |
+
|
22 |
+
with torch.no_grad():
|
23 |
+
frames, masks = prepare_frames_masks(frames, masks, device)
|
24 |
+
outputs = model(frames, masks)
|
25 |
+
|
26 |
+
visualisations = get_videomae_outputs(
|
27 |
+
frames=frames,
|
28 |
+
masks=masks,
|
29 |
+
outputs=outputs,
|
30 |
+
ids=ids,
|
31 |
+
patch_size=patch_size,
|
32 |
+
device=device,
|
33 |
+
)
|
34 |
+
|
35 |
+
return create_plot(visualisations)
|
36 |
+
|
37 |
+
|
38 |
+
with gr.Blocks() as app:
|
39 |
+
video = gr.Video(
|
40 |
+
value="assets/example.mp4",
|
41 |
+
)
|
42 |
+
mask_ratio_slider = gr.Slider(
|
43 |
+
minimum=0.25, maximum=0.95, step=0.05, value=0.75, label="masking ratio"
|
44 |
+
)
|
45 |
+
btn = gr.Button("Run")
|
46 |
+
btn.click(
|
47 |
+
get_visualisations,
|
48 |
+
inputs=[mask_ratio_slider, video],
|
49 |
+
outputs=gr.Plot(label="VideoMAE Outputs", format="png"),
|
50 |
+
)
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
app.launch()
|
assets/checkpoint.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:444df1bafe93eb03915a1cc97b23abf6ce843cb41555ae25795fbb5aefe5957e
|
3 |
+
size 376929369
|
assets/example.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a1dd3bf1d9468a2ec14a7cf7523f8ee1de369da6a91276512e771ca7835e453
|
3 |
+
size 116347302
|
augmentations.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
7 |
+
from torchvision import transforms
|
8 |
+
|
9 |
+
|
10 |
+
class GroupNormalize:
|
11 |
+
def __init__(self, mean: List[float], std: List[float]) -> None:
|
12 |
+
self.mean = mean
|
13 |
+
self.std = std
|
14 |
+
|
15 |
+
def __call__(
|
16 |
+
self, tensor_tuple: Tuple[torch.Tensor, torch.Tensor]
|
17 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
18 |
+
tensor, label = tensor_tuple
|
19 |
+
rep_mean = self.mean * (tensor.size()[0] // len(self.mean))
|
20 |
+
rep_std = self.std * (tensor.size()[0] // len(self.std))
|
21 |
+
|
22 |
+
for t, m, s in zip(tensor, rep_mean, rep_std):
|
23 |
+
t.sub_(m).div_(s)
|
24 |
+
|
25 |
+
return tensor, label
|
26 |
+
|
27 |
+
|
28 |
+
class GroupCenterCrop:
|
29 |
+
def __init__(self, size: int) -> None:
|
30 |
+
self.worker = transforms.CenterCrop(size)
|
31 |
+
|
32 |
+
def __call__(
|
33 |
+
self, img_tuple: Tuple[torch.Tensor, torch.Tensor]
|
34 |
+
) -> Tuple[List[torch.Tensor], torch.Tensor]:
|
35 |
+
img_group, label = img_tuple
|
36 |
+
return [self.worker(img) for img in img_group], label
|
37 |
+
|
38 |
+
|
39 |
+
class Stack:
|
40 |
+
def __init__(self, roll: Optional[bool] = False) -> None:
|
41 |
+
self.roll = roll
|
42 |
+
|
43 |
+
def __call__(self, img_tuple: Tuple[torch.Tensor, torch.Tensor]):
|
44 |
+
img_group, label = img_tuple
|
45 |
+
|
46 |
+
if img_group[0].mode == "L":
|
47 |
+
return (
|
48 |
+
np.concatenate([np.expand_dims(x, 2) for x in img_group], axis=2),
|
49 |
+
label,
|
50 |
+
)
|
51 |
+
elif img_group[0].mode == "RGB":
|
52 |
+
if self.roll:
|
53 |
+
return (
|
54 |
+
np.concatenate(
|
55 |
+
[np.array(x)[:, :, ::-1] for x in img_group], axis=2
|
56 |
+
),
|
57 |
+
label,
|
58 |
+
)
|
59 |
+
else:
|
60 |
+
return np.concatenate(img_group, axis=2), label
|
61 |
+
|
62 |
+
|
63 |
+
class ToTorchFormatTensor:
|
64 |
+
def __init__(self, div: Optional[bool] = True) -> None:
|
65 |
+
self.div = div
|
66 |
+
|
67 |
+
def __call__(
|
68 |
+
self, pic_tuple: Tuple[Union[np.ndarray, torch.Tensor], torch.Tensor]
|
69 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
70 |
+
pic, label = pic_tuple
|
71 |
+
|
72 |
+
if isinstance(pic, np.ndarray):
|
73 |
+
# handle numpy array
|
74 |
+
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
|
75 |
+
elif isinstance(pic, Image.Image):
|
76 |
+
# handle PIL Image
|
77 |
+
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
|
78 |
+
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
|
79 |
+
# put it from HWC to CHW format
|
80 |
+
# yikes, this transpose takes 80% of the loading time/CPU
|
81 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
82 |
+
else:
|
83 |
+
raise TypeError(
|
84 |
+
f"Unsupported type {type(pic)} must be np.ndarray or torch.Tensor"
|
85 |
+
)
|
86 |
+
return img.float().div(255.0) if self.div else img.float(), label
|
87 |
+
|
88 |
+
|
89 |
+
class TubeMaskingGenerator:
|
90 |
+
def __init__(self, input_size: Tuple[int, int, int], mask_ratio: float) -> None:
|
91 |
+
self.frames, self.height, self.width = input_size
|
92 |
+
self.num_patches_per_frame = self.height * self.width
|
93 |
+
self.total_patches = self.frames * self.num_patches_per_frame
|
94 |
+
self.num_masks_per_frame = int(mask_ratio * self.num_patches_per_frame)
|
95 |
+
self.total_masks = self.frames * self.num_masks_per_frame
|
96 |
+
|
97 |
+
def __call__(self):
|
98 |
+
mask_per_frame = np.hstack(
|
99 |
+
[
|
100 |
+
np.zeros(self.num_patches_per_frame - self.num_masks_per_frame),
|
101 |
+
np.ones(self.num_masks_per_frame),
|
102 |
+
]
|
103 |
+
)
|
104 |
+
np.random.shuffle(mask_per_frame)
|
105 |
+
mask = np.tile(mask_per_frame, (self.frames, 1)).flatten()
|
106 |
+
return mask
|
107 |
+
|
108 |
+
|
109 |
+
def get_videomae_transform(input_size: int = 224) -> "transforms.Compose":
|
110 |
+
return transforms.Compose(
|
111 |
+
[
|
112 |
+
GroupCenterCrop(input_size),
|
113 |
+
Stack(roll=False),
|
114 |
+
ToTorchFormatTensor(div=True),
|
115 |
+
GroupNormalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
|
116 |
+
]
|
117 |
+
)
|
models.py
ADDED
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.utils.checkpoint as checkpoint
|
9 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
10 |
+
|
11 |
+
from augmentations import TubeMaskingGenerator
|
12 |
+
|
13 |
+
__all__ = ["load_model"]
|
14 |
+
|
15 |
+
|
16 |
+
def _cfg(url="", **kwargs):
|
17 |
+
return {
|
18 |
+
"url": url,
|
19 |
+
"num_classes": 400,
|
20 |
+
"input_size": (3, 224, 224),
|
21 |
+
"pool_size": None,
|
22 |
+
"crop_pct": 0.9,
|
23 |
+
"interpolation": "bicubic",
|
24 |
+
"mean": (0.5, 0.5, 0.5),
|
25 |
+
"std": (0.5, 0.5, 0.5),
|
26 |
+
**kwargs,
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class Mlp(nn.Module):
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
in_features,
|
34 |
+
hidden_features=None,
|
35 |
+
out_features=None,
|
36 |
+
act_layer=nn.GELU,
|
37 |
+
drop=0.0,
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
out_features = out_features or in_features
|
41 |
+
hidden_features = hidden_features or in_features
|
42 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
43 |
+
self.act = act_layer()
|
44 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
45 |
+
self.drop = nn.Dropout(drop)
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
x = self.fc1(x)
|
49 |
+
x = self.act(x)
|
50 |
+
# x = self.drop(x)
|
51 |
+
# commit this for the orignal BERT implement
|
52 |
+
x = self.fc2(x)
|
53 |
+
x = self.drop(x)
|
54 |
+
return x
|
55 |
+
|
56 |
+
|
57 |
+
class DropPath(nn.Module):
|
58 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
59 |
+
|
60 |
+
def __init__(self, drop_prob=None):
|
61 |
+
super(DropPath, self).__init__()
|
62 |
+
self.drop_prob = drop_prob
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
return drop_path(x, self.drop_prob, self.training)
|
66 |
+
|
67 |
+
def extra_repr(self) -> str:
|
68 |
+
return "p={}".format(self.drop_prob)
|
69 |
+
|
70 |
+
|
71 |
+
class Attention(nn.Module):
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
dim,
|
75 |
+
num_heads=8,
|
76 |
+
qkv_bias=False,
|
77 |
+
qk_scale=None,
|
78 |
+
attn_drop=0.0,
|
79 |
+
proj_drop=0.0,
|
80 |
+
attn_head_dim=None,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
self.num_heads = num_heads
|
84 |
+
head_dim = dim // num_heads
|
85 |
+
if attn_head_dim is not None:
|
86 |
+
head_dim = attn_head_dim
|
87 |
+
all_head_dim = head_dim * self.num_heads
|
88 |
+
self.scale = qk_scale or head_dim**-0.5
|
89 |
+
|
90 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
91 |
+
if qkv_bias:
|
92 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
93 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
94 |
+
else:
|
95 |
+
self.q_bias = None
|
96 |
+
self.v_bias = None
|
97 |
+
|
98 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
99 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
100 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
B, N, C = x.shape
|
104 |
+
qkv_bias = None
|
105 |
+
if self.q_bias is not None:
|
106 |
+
qkv_bias = torch.cat(
|
107 |
+
(
|
108 |
+
self.q_bias,
|
109 |
+
torch.zeros_like(self.v_bias, requires_grad=False),
|
110 |
+
self.v_bias,
|
111 |
+
)
|
112 |
+
)
|
113 |
+
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
114 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
115 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
116 |
+
q, k, v = (
|
117 |
+
qkv[0],
|
118 |
+
qkv[1],
|
119 |
+
qkv[2],
|
120 |
+
) # make torchscript happy (cannot use tensor as tuple)
|
121 |
+
|
122 |
+
q = q * self.scale
|
123 |
+
attn = q @ k.transpose(-2, -1)
|
124 |
+
|
125 |
+
attn = attn.softmax(dim=-1)
|
126 |
+
attn = self.attn_drop(attn)
|
127 |
+
|
128 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
129 |
+
x = self.proj(x)
|
130 |
+
x = self.proj_drop(x)
|
131 |
+
return x
|
132 |
+
|
133 |
+
|
134 |
+
class Block(nn.Module):
|
135 |
+
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
dim,
|
139 |
+
num_heads,
|
140 |
+
mlp_ratio=4.0,
|
141 |
+
qkv_bias=False,
|
142 |
+
qk_scale=None,
|
143 |
+
drop=0.0,
|
144 |
+
attn_drop=0.0,
|
145 |
+
drop_path=0.0,
|
146 |
+
init_values=None,
|
147 |
+
act_layer=nn.GELU,
|
148 |
+
norm_layer=nn.LayerNorm,
|
149 |
+
attn_head_dim=None,
|
150 |
+
):
|
151 |
+
super().__init__()
|
152 |
+
self.norm1 = norm_layer(dim)
|
153 |
+
self.attn = Attention(
|
154 |
+
dim,
|
155 |
+
num_heads=num_heads,
|
156 |
+
qkv_bias=qkv_bias,
|
157 |
+
qk_scale=qk_scale,
|
158 |
+
attn_drop=attn_drop,
|
159 |
+
proj_drop=drop,
|
160 |
+
attn_head_dim=attn_head_dim,
|
161 |
+
)
|
162 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
163 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
164 |
+
self.norm2 = norm_layer(dim)
|
165 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
166 |
+
self.mlp = Mlp(
|
167 |
+
in_features=dim,
|
168 |
+
hidden_features=mlp_hidden_dim,
|
169 |
+
act_layer=act_layer,
|
170 |
+
drop=drop,
|
171 |
+
)
|
172 |
+
|
173 |
+
if init_values > 0:
|
174 |
+
self.gamma_1 = nn.Parameter(
|
175 |
+
init_values * torch.ones((dim)), requires_grad=True
|
176 |
+
)
|
177 |
+
self.gamma_2 = nn.Parameter(
|
178 |
+
init_values * torch.ones((dim)), requires_grad=True
|
179 |
+
)
|
180 |
+
else:
|
181 |
+
self.gamma_1, self.gamma_2 = None, None
|
182 |
+
|
183 |
+
def forward(self, x):
|
184 |
+
if self.gamma_1 is None:
|
185 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
186 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
187 |
+
else:
|
188 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
|
189 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
190 |
+
return x
|
191 |
+
|
192 |
+
|
193 |
+
class PatchEmbed(nn.Module):
|
194 |
+
"""Image to Patch Embedding"""
|
195 |
+
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
img_size=224,
|
199 |
+
patch_size=16,
|
200 |
+
in_chans=3,
|
201 |
+
embed_dim=768,
|
202 |
+
num_frames=16,
|
203 |
+
tubelet_size=2,
|
204 |
+
):
|
205 |
+
super().__init__()
|
206 |
+
img_size = to_2tuple(img_size)
|
207 |
+
patch_size = to_2tuple(patch_size)
|
208 |
+
self.tubelet_size = int(tubelet_size)
|
209 |
+
num_patches = (
|
210 |
+
(img_size[1] // patch_size[1])
|
211 |
+
* (img_size[0] // patch_size[0])
|
212 |
+
* (num_frames // self.tubelet_size)
|
213 |
+
)
|
214 |
+
self.img_size = img_size
|
215 |
+
self.patch_size = patch_size
|
216 |
+
self.num_patches = num_patches
|
217 |
+
self.proj = nn.Conv3d(
|
218 |
+
in_channels=in_chans,
|
219 |
+
out_channels=embed_dim,
|
220 |
+
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
|
221 |
+
stride=(self.tubelet_size, patch_size[0], patch_size[1]),
|
222 |
+
)
|
223 |
+
|
224 |
+
def forward(self, x, **kwargs):
|
225 |
+
B, C, T, H, W = x.shape
|
226 |
+
# FIXME look at relaxing size constraints
|
227 |
+
assert (
|
228 |
+
H == self.img_size[0] and W == self.img_size[1]
|
229 |
+
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
230 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
231 |
+
return x
|
232 |
+
|
233 |
+
|
234 |
+
def get_sinusoid_encoding_table(n_position, d_hid):
|
235 |
+
def get_position_angle_vec(position):
|
236 |
+
return [
|
237 |
+
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
|
238 |
+
for hid_j in range(d_hid)
|
239 |
+
]
|
240 |
+
|
241 |
+
sinusoid_table = np.array(
|
242 |
+
[get_position_angle_vec(pos_i) for pos_i in range(n_position)]
|
243 |
+
)
|
244 |
+
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
245 |
+
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
246 |
+
|
247 |
+
return torch.tensor(
|
248 |
+
sinusoid_table, dtype=torch.float, requires_grad=False
|
249 |
+
).unsqueeze(0)
|
250 |
+
|
251 |
+
|
252 |
+
class PretrainVisionTransformerEncoder(nn.Module):
|
253 |
+
"""Vision Transformer with support for patch or hybrid CNN input stage"""
|
254 |
+
|
255 |
+
def __init__(
|
256 |
+
self,
|
257 |
+
img_size=224,
|
258 |
+
patch_size=16,
|
259 |
+
in_chans=3,
|
260 |
+
num_classes=0,
|
261 |
+
embed_dim=768,
|
262 |
+
depth=12,
|
263 |
+
num_heads=12,
|
264 |
+
mlp_ratio=4.0,
|
265 |
+
qkv_bias=False,
|
266 |
+
qk_scale=None,
|
267 |
+
drop_rate=0.0,
|
268 |
+
attn_drop_rate=0.0,
|
269 |
+
drop_path_rate=0.0,
|
270 |
+
norm_layer=nn.LayerNorm,
|
271 |
+
init_values=None,
|
272 |
+
tubelet_size=2,
|
273 |
+
use_checkpoint=False,
|
274 |
+
use_learnable_pos_emb=False,
|
275 |
+
):
|
276 |
+
super().__init__()
|
277 |
+
self.num_classes = num_classes
|
278 |
+
self.num_features = self.embed_dim = (
|
279 |
+
embed_dim # num_features for consistency with other models
|
280 |
+
)
|
281 |
+
self.patch_embed = PatchEmbed(
|
282 |
+
img_size=img_size,
|
283 |
+
patch_size=patch_size,
|
284 |
+
in_chans=in_chans,
|
285 |
+
embed_dim=embed_dim,
|
286 |
+
tubelet_size=tubelet_size,
|
287 |
+
)
|
288 |
+
num_patches = self.patch_embed.num_patches
|
289 |
+
self.use_checkpoint = use_checkpoint
|
290 |
+
|
291 |
+
# TODO: Add the cls token
|
292 |
+
if use_learnable_pos_emb:
|
293 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
294 |
+
else:
|
295 |
+
# sine-cosine positional embeddings
|
296 |
+
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
|
297 |
+
|
298 |
+
dpr = [
|
299 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
300 |
+
] # stochastic depth decay rule
|
301 |
+
self.blocks = nn.ModuleList(
|
302 |
+
[
|
303 |
+
Block(
|
304 |
+
dim=embed_dim,
|
305 |
+
num_heads=num_heads,
|
306 |
+
mlp_ratio=mlp_ratio,
|
307 |
+
qkv_bias=qkv_bias,
|
308 |
+
qk_scale=qk_scale,
|
309 |
+
drop=drop_rate,
|
310 |
+
attn_drop=attn_drop_rate,
|
311 |
+
drop_path=dpr[i],
|
312 |
+
norm_layer=norm_layer,
|
313 |
+
init_values=init_values,
|
314 |
+
)
|
315 |
+
for i in range(depth)
|
316 |
+
]
|
317 |
+
)
|
318 |
+
self.norm = norm_layer(embed_dim)
|
319 |
+
self.head = (
|
320 |
+
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
321 |
+
)
|
322 |
+
|
323 |
+
if use_learnable_pos_emb:
|
324 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
325 |
+
|
326 |
+
self.apply(self._init_weights)
|
327 |
+
|
328 |
+
def _init_weights(self, m):
|
329 |
+
if isinstance(m, nn.Linear):
|
330 |
+
nn.init.xavier_uniform_(m.weight)
|
331 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
332 |
+
nn.init.constant_(m.bias, 0)
|
333 |
+
elif isinstance(m, nn.LayerNorm):
|
334 |
+
nn.init.constant_(m.bias, 0)
|
335 |
+
nn.init.constant_(m.weight, 1.0)
|
336 |
+
|
337 |
+
def get_num_layers(self):
|
338 |
+
return len(self.blocks)
|
339 |
+
|
340 |
+
@torch.jit.ignore
|
341 |
+
def no_weight_decay(self):
|
342 |
+
return {"pos_embed", "cls_token"}
|
343 |
+
|
344 |
+
def get_classifier(self):
|
345 |
+
return self.head
|
346 |
+
|
347 |
+
def reset_classifier(self, num_classes, global_pool=""):
|
348 |
+
self.num_classes = num_classes
|
349 |
+
self.head = (
|
350 |
+
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
351 |
+
)
|
352 |
+
|
353 |
+
def forward_features(self, x, mask):
|
354 |
+
_, _, T, _, _ = x.shape
|
355 |
+
x = self.patch_embed(x)
|
356 |
+
|
357 |
+
x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
|
358 |
+
|
359 |
+
B, _, C = x.shape
|
360 |
+
x_vis = x[~mask].reshape(B, -1, C) # ~mask means visible
|
361 |
+
|
362 |
+
if self.use_checkpoint:
|
363 |
+
for blk in self.blocks:
|
364 |
+
x_vis = checkpoint.checkpoint(blk, x_vis)
|
365 |
+
else:
|
366 |
+
for blk in self.blocks:
|
367 |
+
x_vis = blk(x_vis)
|
368 |
+
|
369 |
+
x_vis = self.norm(x_vis)
|
370 |
+
return x_vis
|
371 |
+
|
372 |
+
def forward(self, x, mask):
|
373 |
+
x = self.forward_features(x, mask)
|
374 |
+
x = self.head(x)
|
375 |
+
return x
|
376 |
+
|
377 |
+
|
378 |
+
class PretrainVisionTransformerDecoder(nn.Module):
|
379 |
+
"""Vision Transformer with support for patch or hybrid CNN input stage"""
|
380 |
+
|
381 |
+
def __init__(
|
382 |
+
self,
|
383 |
+
patch_size=16,
|
384 |
+
num_classes=768,
|
385 |
+
embed_dim=768,
|
386 |
+
depth=12,
|
387 |
+
num_heads=12,
|
388 |
+
mlp_ratio=4.0,
|
389 |
+
qkv_bias=False,
|
390 |
+
qk_scale=None,
|
391 |
+
drop_rate=0.0,
|
392 |
+
attn_drop_rate=0.0,
|
393 |
+
drop_path_rate=0.0,
|
394 |
+
norm_layer=nn.LayerNorm,
|
395 |
+
init_values=None,
|
396 |
+
num_patches=196,
|
397 |
+
tubelet_size=2,
|
398 |
+
use_checkpoint=False,
|
399 |
+
):
|
400 |
+
super().__init__()
|
401 |
+
self.num_classes = num_classes
|
402 |
+
assert num_classes == 3 * tubelet_size * patch_size**2
|
403 |
+
self.num_features = self.embed_dim = (
|
404 |
+
embed_dim # num_features for consistency with other models
|
405 |
+
)
|
406 |
+
self.patch_size = patch_size
|
407 |
+
self.use_checkpoint = use_checkpoint
|
408 |
+
|
409 |
+
dpr = [
|
410 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
411 |
+
] # stochastic depth decay rule
|
412 |
+
self.blocks = nn.ModuleList(
|
413 |
+
[
|
414 |
+
Block(
|
415 |
+
dim=embed_dim,
|
416 |
+
num_heads=num_heads,
|
417 |
+
mlp_ratio=mlp_ratio,
|
418 |
+
qkv_bias=qkv_bias,
|
419 |
+
qk_scale=qk_scale,
|
420 |
+
drop=drop_rate,
|
421 |
+
attn_drop=attn_drop_rate,
|
422 |
+
drop_path=dpr[i],
|
423 |
+
norm_layer=norm_layer,
|
424 |
+
init_values=init_values,
|
425 |
+
)
|
426 |
+
for i in range(depth)
|
427 |
+
]
|
428 |
+
)
|
429 |
+
self.norm = norm_layer(embed_dim)
|
430 |
+
self.head = (
|
431 |
+
nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
432 |
+
)
|
433 |
+
|
434 |
+
self.apply(self._init_weights)
|
435 |
+
|
436 |
+
def _init_weights(self, m):
|
437 |
+
if isinstance(m, nn.Linear):
|
438 |
+
nn.init.xavier_uniform_(m.weight)
|
439 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
440 |
+
nn.init.constant_(m.bias, 0)
|
441 |
+
elif isinstance(m, nn.LayerNorm):
|
442 |
+
nn.init.constant_(m.bias, 0)
|
443 |
+
nn.init.constant_(m.weight, 1.0)
|
444 |
+
|
445 |
+
def get_num_layers(self):
|
446 |
+
return len(self.blocks)
|
447 |
+
|
448 |
+
@torch.jit.ignore
|
449 |
+
def no_weight_decay(self):
|
450 |
+
return {"pos_embed", "cls_token"}
|
451 |
+
|
452 |
+
def get_classifier(self):
|
453 |
+
return self.head
|
454 |
+
|
455 |
+
def reset_classifier(self, num_classes, global_pool=""):
|
456 |
+
self.num_classes = num_classes
|
457 |
+
self.head = (
|
458 |
+
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
459 |
+
)
|
460 |
+
|
461 |
+
def forward(self, x, return_token_num):
|
462 |
+
if self.use_checkpoint:
|
463 |
+
for blk in self.blocks:
|
464 |
+
x = checkpoint.checkpoint(blk, x)
|
465 |
+
else:
|
466 |
+
for blk in self.blocks:
|
467 |
+
x = blk(x)
|
468 |
+
|
469 |
+
if return_token_num > 0:
|
470 |
+
x = self.head(
|
471 |
+
self.norm(x[:, -return_token_num:])
|
472 |
+
) # only return the mask tokens predict pixels
|
473 |
+
else:
|
474 |
+
x = self.head(self.norm(x))
|
475 |
+
|
476 |
+
return x
|
477 |
+
|
478 |
+
|
479 |
+
class PretrainVisionTransformer(nn.Module):
|
480 |
+
"""Vision Transformer with support for patch or hybrid CNN input stage"""
|
481 |
+
|
482 |
+
def __init__(
|
483 |
+
self,
|
484 |
+
img_size=224,
|
485 |
+
patch_size=16,
|
486 |
+
encoder_in_chans=3,
|
487 |
+
encoder_num_classes=0,
|
488 |
+
encoder_embed_dim=768,
|
489 |
+
encoder_depth=12,
|
490 |
+
encoder_num_heads=12,
|
491 |
+
decoder_num_classes=1536, # decoder_num_classes=768,
|
492 |
+
decoder_embed_dim=512,
|
493 |
+
decoder_depth=8,
|
494 |
+
decoder_num_heads=8,
|
495 |
+
mlp_ratio=4.0,
|
496 |
+
qkv_bias=False,
|
497 |
+
qk_scale=None,
|
498 |
+
drop_rate=0.0,
|
499 |
+
attn_drop_rate=0.0,
|
500 |
+
drop_path_rate=0.0,
|
501 |
+
norm_layer=nn.LayerNorm,
|
502 |
+
init_values=0.0,
|
503 |
+
use_learnable_pos_emb=False,
|
504 |
+
use_checkpoint=False,
|
505 |
+
tubelet_size=2,
|
506 |
+
num_classes=0, # avoid the error from create_fn in timm
|
507 |
+
in_chans=0, # avoid the error from create_fn in timm
|
508 |
+
):
|
509 |
+
super().__init__()
|
510 |
+
self.encoder = PretrainVisionTransformerEncoder(
|
511 |
+
img_size=img_size,
|
512 |
+
patch_size=patch_size,
|
513 |
+
in_chans=encoder_in_chans,
|
514 |
+
num_classes=encoder_num_classes,
|
515 |
+
embed_dim=encoder_embed_dim,
|
516 |
+
depth=encoder_depth,
|
517 |
+
num_heads=encoder_num_heads,
|
518 |
+
mlp_ratio=mlp_ratio,
|
519 |
+
qkv_bias=qkv_bias,
|
520 |
+
qk_scale=qk_scale,
|
521 |
+
drop_rate=drop_rate,
|
522 |
+
attn_drop_rate=attn_drop_rate,
|
523 |
+
drop_path_rate=drop_path_rate,
|
524 |
+
norm_layer=norm_layer,
|
525 |
+
init_values=init_values,
|
526 |
+
tubelet_size=tubelet_size,
|
527 |
+
use_checkpoint=use_checkpoint,
|
528 |
+
use_learnable_pos_emb=use_learnable_pos_emb,
|
529 |
+
)
|
530 |
+
|
531 |
+
self.decoder = PretrainVisionTransformerDecoder(
|
532 |
+
patch_size=patch_size,
|
533 |
+
num_patches=self.encoder.patch_embed.num_patches,
|
534 |
+
num_classes=decoder_num_classes,
|
535 |
+
embed_dim=decoder_embed_dim,
|
536 |
+
depth=decoder_depth,
|
537 |
+
num_heads=decoder_num_heads,
|
538 |
+
mlp_ratio=mlp_ratio,
|
539 |
+
qkv_bias=qkv_bias,
|
540 |
+
qk_scale=qk_scale,
|
541 |
+
drop_rate=drop_rate,
|
542 |
+
attn_drop_rate=attn_drop_rate,
|
543 |
+
drop_path_rate=drop_path_rate,
|
544 |
+
norm_layer=norm_layer,
|
545 |
+
init_values=init_values,
|
546 |
+
tubelet_size=tubelet_size,
|
547 |
+
use_checkpoint=use_checkpoint,
|
548 |
+
)
|
549 |
+
|
550 |
+
self.encoder_to_decoder = nn.Linear(
|
551 |
+
encoder_embed_dim, decoder_embed_dim, bias=False
|
552 |
+
)
|
553 |
+
|
554 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
|
555 |
+
|
556 |
+
self.pos_embed = get_sinusoid_encoding_table(
|
557 |
+
self.encoder.patch_embed.num_patches, decoder_embed_dim
|
558 |
+
)
|
559 |
+
|
560 |
+
trunc_normal_(self.mask_token, std=0.02)
|
561 |
+
|
562 |
+
def _init_weights(self, m):
|
563 |
+
if isinstance(m, nn.Linear):
|
564 |
+
nn.init.xavier_uniform_(m.weight)
|
565 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
566 |
+
nn.init.constant_(m.bias, 0)
|
567 |
+
elif isinstance(m, nn.LayerNorm):
|
568 |
+
nn.init.constant_(m.bias, 0)
|
569 |
+
nn.init.constant_(m.weight, 1.0)
|
570 |
+
|
571 |
+
def get_num_layers(self):
|
572 |
+
return len(self.blocks)
|
573 |
+
|
574 |
+
@torch.jit.ignore
|
575 |
+
def no_weight_decay(self):
|
576 |
+
return {"pos_embed", "cls_token", "mask_token"}
|
577 |
+
|
578 |
+
def forward(self, x, mask):
|
579 |
+
_, _, T, _, _ = x.shape
|
580 |
+
x_vis = self.encoder(x, mask) # [B, N_vis, C_e]
|
581 |
+
x_vis = self.encoder_to_decoder(x_vis) # [B, N_vis, C_d]
|
582 |
+
B, N, C = x_vis.shape
|
583 |
+
# we don't unshuffle the correct visible token order,
|
584 |
+
# but shuffle the pos embedding accorddingly.
|
585 |
+
expand_pos_embed = (
|
586 |
+
self.pos_embed.expand(B, -1, -1).type_as(x).to(x.device).clone().detach()
|
587 |
+
)
|
588 |
+
pos_emd_vis = expand_pos_embed[~mask].reshape(B, -1, C)
|
589 |
+
pos_emd_mask = expand_pos_embed[mask].reshape(B, -1, C)
|
590 |
+
x_full = torch.cat(
|
591 |
+
[x_vis + pos_emd_vis, self.mask_token + pos_emd_mask], dim=1
|
592 |
+
) # [B, N, C_d]
|
593 |
+
x = self.decoder(x_full, pos_emd_mask.shape[1]) # [B, N_mask, 3 * 16 * 16]
|
594 |
+
|
595 |
+
return x
|
596 |
+
|
597 |
+
|
598 |
+
def pretrain_videomae_small_patch16_224(pretrained=False, **kwargs):
|
599 |
+
model = PretrainVisionTransformer(
|
600 |
+
img_size=224,
|
601 |
+
patch_size=16,
|
602 |
+
encoder_embed_dim=384,
|
603 |
+
encoder_depth=12,
|
604 |
+
encoder_num_heads=6,
|
605 |
+
encoder_num_classes=0,
|
606 |
+
decoder_num_classes=1536,
|
607 |
+
decoder_embed_dim=192,
|
608 |
+
decoder_num_heads=3,
|
609 |
+
mlp_ratio=4,
|
610 |
+
qkv_bias=True,
|
611 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
612 |
+
**kwargs,
|
613 |
+
)
|
614 |
+
model.default_cfg = _cfg()
|
615 |
+
if pretrained:
|
616 |
+
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu")
|
617 |
+
model.load_state_dict(checkpoint["model"])
|
618 |
+
return model
|
619 |
+
|
620 |
+
|
621 |
+
def pretrain_videomae_base_patch16_224(pretrained=False, **kwargs):
|
622 |
+
model = PretrainVisionTransformer(
|
623 |
+
img_size=224,
|
624 |
+
patch_size=16,
|
625 |
+
encoder_embed_dim=768,
|
626 |
+
encoder_depth=12,
|
627 |
+
encoder_num_heads=12,
|
628 |
+
encoder_num_classes=0,
|
629 |
+
decoder_num_classes=1536,
|
630 |
+
decoder_embed_dim=384,
|
631 |
+
decoder_num_heads=6,
|
632 |
+
mlp_ratio=4,
|
633 |
+
qkv_bias=True,
|
634 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
635 |
+
**kwargs,
|
636 |
+
)
|
637 |
+
model.default_cfg = _cfg()
|
638 |
+
if pretrained:
|
639 |
+
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu")
|
640 |
+
model.load_state_dict(checkpoint["model"])
|
641 |
+
return model
|
642 |
+
|
643 |
+
|
644 |
+
def pretrain_videomae_large_patch16_224(pretrained=False, **kwargs):
|
645 |
+
model = PretrainVisionTransformer(
|
646 |
+
img_size=224,
|
647 |
+
patch_size=16,
|
648 |
+
encoder_embed_dim=1024,
|
649 |
+
encoder_depth=24,
|
650 |
+
encoder_num_heads=16,
|
651 |
+
encoder_num_classes=0,
|
652 |
+
decoder_num_classes=1536,
|
653 |
+
decoder_embed_dim=512,
|
654 |
+
decoder_num_heads=8,
|
655 |
+
mlp_ratio=4,
|
656 |
+
qkv_bias=True,
|
657 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
658 |
+
**kwargs,
|
659 |
+
)
|
660 |
+
model.default_cfg = _cfg()
|
661 |
+
if pretrained:
|
662 |
+
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu")
|
663 |
+
model.load_state_dict(checkpoint["model"])
|
664 |
+
return model
|
665 |
+
|
666 |
+
|
667 |
+
def pretrain_videomae_huge_patch16_224(pretrained=False, **kwargs):
|
668 |
+
model = PretrainVisionTransformer(
|
669 |
+
img_size=224,
|
670 |
+
patch_size=16,
|
671 |
+
encoder_embed_dim=1280,
|
672 |
+
encoder_depth=32,
|
673 |
+
encoder_num_heads=16,
|
674 |
+
encoder_num_classes=0,
|
675 |
+
decoder_num_classes=1536,
|
676 |
+
decoder_embed_dim=640,
|
677 |
+
decoder_num_heads=8,
|
678 |
+
mlp_ratio=4,
|
679 |
+
qkv_bias=True,
|
680 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
681 |
+
**kwargs,
|
682 |
+
)
|
683 |
+
model.default_cfg = _cfg()
|
684 |
+
if pretrained:
|
685 |
+
checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu")
|
686 |
+
model.load_state_dict(checkpoint["model"])
|
687 |
+
return model
|
688 |
+
|
689 |
+
|
690 |
+
def load_model(
|
691 |
+
path: str,
|
692 |
+
mask_ratio: float,
|
693 |
+
device: "torch.device",
|
694 |
+
num_frames: int = 16,
|
695 |
+
input_size: int = 224,
|
696 |
+
) -> Tuple[torch.nn.Module, torch.Tensor, Tuple[int, ...]]:
|
697 |
+
model = pretrain_videomae_base_patch16_224(
|
698 |
+
pretrained=False, drop_path_rate=0.0, decoder_depth=4
|
699 |
+
).to(device)
|
700 |
+
patch_size = model.encoder.patch_embed.patch_size
|
701 |
+
window_size = (
|
702 |
+
num_frames // 2,
|
703 |
+
input_size // patch_size[0],
|
704 |
+
input_size // patch_size[1],
|
705 |
+
)
|
706 |
+
|
707 |
+
weights = torch.load(path, map_location="cpu")
|
708 |
+
model.load_state_dict(weights["model"])
|
709 |
+
model.eval()
|
710 |
+
|
711 |
+
masked_generator = TubeMaskingGenerator(window_size, mask_ratio)
|
712 |
+
masks = torch.from_numpy(masked_generator())
|
713 |
+
|
714 |
+
return model, masks, patch_size
|
pyproject.toml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[tool.isort]
|
2 |
+
profile = "black"
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
einops
|
2 |
+
decord
|
3 |
+
numpy
|
4 |
+
timm
|
5 |
+
torch
|
6 |
+
torchvision
|
utils.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from decord import VideoReader, cpu
|
7 |
+
from einops import rearrange
|
8 |
+
from PIL import Image
|
9 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
10 |
+
from torchvision import transforms
|
11 |
+
from torchvision.transforms import ToPILImage
|
12 |
+
|
13 |
+
|
14 |
+
def get_frames(
|
15 |
+
path: str, transform: transforms.Compose, num_frames: int = 16
|
16 |
+
) -> Tuple[torch.Tensor, List[int]]:
|
17 |
+
vr = VideoReader(path, ctx=cpu(0))
|
18 |
+
tmp = np.arange(0, num_frames * 2, 2) + 60
|
19 |
+
frame_id_list = tmp.tolist()
|
20 |
+
video_data = vr.get_batch(frame_id_list).asnumpy()
|
21 |
+
frames, _ = transform(
|
22 |
+
(
|
23 |
+
[
|
24 |
+
Image.fromarray(video_data[vid, :, :, :]).convert("RGB")
|
25 |
+
for vid, _ in enumerate(frame_id_list)
|
26 |
+
],
|
27 |
+
None,
|
28 |
+
)
|
29 |
+
)
|
30 |
+
frames = frames.view((num_frames, 3) + frames.size()[-2:]).transpose(0, 1)
|
31 |
+
|
32 |
+
return frames, frame_id_list
|
33 |
+
|
34 |
+
|
35 |
+
def prepare_frames_masks(
|
36 |
+
frames: torch.Tensor, masks: torch.Tensor, device: "torch.device"
|
37 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
38 |
+
frames = frames.unsqueeze(0)
|
39 |
+
masks = masks.unsqueeze(0)
|
40 |
+
|
41 |
+
frames = frames.to(device, non_blocking=True)
|
42 |
+
masks = masks.to(device, non_blocking=True).flatten(1).to(torch.bool)
|
43 |
+
|
44 |
+
return frames, masks
|
45 |
+
|
46 |
+
|
47 |
+
def get_videomae_outputs(
|
48 |
+
frames: torch.Tensor,
|
49 |
+
masks: torch.Tensor,
|
50 |
+
outputs: torch.Tensor,
|
51 |
+
ids: List[int],
|
52 |
+
patch_size: Tuple[int, ...],
|
53 |
+
device: "torch.device",
|
54 |
+
):
|
55 |
+
visualisations = []
|
56 |
+
|
57 |
+
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None, None]
|
58 |
+
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None, None]
|
59 |
+
ori_img = frames * std + mean # in [0, 1]
|
60 |
+
original_images = [
|
61 |
+
ToPILImage()(ori_img[0, :, vid, :, :].cpu()) for vid, _ in enumerate(ids)
|
62 |
+
]
|
63 |
+
|
64 |
+
img_squeeze = rearrange(
|
65 |
+
ori_img,
|
66 |
+
"b c (t p0) (h p1) (w p2) -> b (t h w) (p0 p1 p2) c",
|
67 |
+
p0=2,
|
68 |
+
p1=patch_size[0],
|
69 |
+
p2=patch_size[0],
|
70 |
+
)
|
71 |
+
img_norm = (img_squeeze - img_squeeze.mean(dim=-2, keepdim=True)) / (
|
72 |
+
img_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6
|
73 |
+
)
|
74 |
+
img_patch = rearrange(img_norm, "b n p c -> b n (p c)")
|
75 |
+
img_patch[masks] = outputs
|
76 |
+
|
77 |
+
# make mask
|
78 |
+
mask = torch.ones_like(img_patch)
|
79 |
+
mask[masks] = 0
|
80 |
+
mask = rearrange(mask, "b n (p c) -> b n p c", c=3)
|
81 |
+
mask = rearrange(
|
82 |
+
mask,
|
83 |
+
"b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2) ",
|
84 |
+
p0=2,
|
85 |
+
p1=patch_size[0],
|
86 |
+
p2=patch_size[1],
|
87 |
+
h=14,
|
88 |
+
w=14,
|
89 |
+
)
|
90 |
+
|
91 |
+
# save reconstruction video
|
92 |
+
rec_img = rearrange(img_patch, "b n (p c) -> b n p c", c=3)
|
93 |
+
rec_img = rec_img * (
|
94 |
+
img_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6
|
95 |
+
) + img_squeeze.mean(dim=-2, keepdim=True)
|
96 |
+
rec_img = rearrange(
|
97 |
+
rec_img,
|
98 |
+
"b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)",
|
99 |
+
p0=2,
|
100 |
+
p1=patch_size[0],
|
101 |
+
p2=patch_size[1],
|
102 |
+
h=14,
|
103 |
+
w=14,
|
104 |
+
)
|
105 |
+
reconstructed_images = [
|
106 |
+
ToPILImage()(rec_img[0, :, vid, :, :].cpu().clamp(0, 0.996))
|
107 |
+
for vid, _ in enumerate(ids)
|
108 |
+
]
|
109 |
+
|
110 |
+
# save masked video
|
111 |
+
img_mask = rec_img * mask
|
112 |
+
masked_images = [
|
113 |
+
ToPILImage()(img_mask[0, :, vid, :, :].cpu()) for vid, _ in enumerate(ids)
|
114 |
+
]
|
115 |
+
|
116 |
+
assert len(original_images) == len(reconstructed_images) == len(masked_images)
|
117 |
+
|
118 |
+
for i in range(len(original_images)):
|
119 |
+
visualisations.append(
|
120 |
+
[original_images[i], masked_images[i], reconstructed_images[i]]
|
121 |
+
)
|
122 |
+
|
123 |
+
return visualisations
|
124 |
+
|
125 |
+
|
126 |
+
def create_plot(images):
|
127 |
+
num_cols = 3
|
128 |
+
num_rows = 16
|
129 |
+
column_names = ["Original Patch", "Masked Patch", "Reconstructed Patch"]
|
130 |
+
|
131 |
+
fig, axes = plt.subplots(num_rows, num_cols, figsize=(12, 48))
|
132 |
+
|
133 |
+
for i in range(num_rows):
|
134 |
+
for j in range(num_cols):
|
135 |
+
axes[i, j].imshow(images[i][j])
|
136 |
+
axes[i, j].axis("off")
|
137 |
+
|
138 |
+
if i == 0:
|
139 |
+
axes[i, j].set_title(column_names[j], fontsize=16)
|
140 |
+
|
141 |
+
plt.tight_layout()
|
142 |
+
plt.show()
|
143 |
+
|
144 |
+
return fig
|