EchoTruth / app.py
lightmate's picture
Update app.py
b90e46a verified
import gradio as gr
from newspaper import Article
from modules.online_search import search_online
from modules.validation import calculate_truthfulness_score
from modules.knowledge_graph import search_kg
from modules.generate_explanation import generate_explanation
from dotenv import load_dotenv
import os
from concurrent.futures import ThreadPoolExecutor
from modules.record import DatabaseComponent # Import DatabaseComponent
# Load environment variables
load_dotenv()
# Initialize database (handle connection failures)
db = None
try:
db = DatabaseComponent()
except Exception as e:
print(f"[ERROR] Database connection failed: {str(e)}")
# Initialize thread executor
executor = ThreadPoolExecutor(max_workers=3)
# Constants for file paths and API keys
KG_INDEX_PATH = "KG/news_category_index.faiss"
KG_DATASET_PATH = "KG/News_Category_Dataset_v3.json"
SEARCH_API_KEY = os.getenv("SEARCH_API_KEY")
SEARCH_BASE_URL = os.getenv("SEARCH_BASE_URL")
SEARCH_MODEL = os.getenv("SEARCH_MODEL")
# Function to process and verify news
def evaluate_news(news_input):
yield "**Processing... Please wait.** ⏳"
# Handle URL input
if news_input.startswith("http"):
try:
article = Article(news_input)
article.download()
article.parse()
news_text = article.title + ". " + article.text
except Exception as e:
yield f"**Error processing the URL:** {str(e)}"
return
else:
news_text = news_input
try:
# Run search tasks concurrently
future_kg = executor.submit(search_kg, news_text, KG_INDEX_PATH, KG_DATASET_PATH)
future_online = executor.submit(search_online, news_text, SEARCH_API_KEY, SEARCH_BASE_URL, SEARCH_MODEL)
# Wait for results
kg_content = future_kg.result()
online_search_results = future_online.result()
# Extract citations from the search results
citations = online_search_results.get("citations", []) # List of sources
first_citation = citations[0] if citations else "N/A" # Store first citation in DB
# Combine context
context = online_search_results['message_content'] + '\n' + kg_content + '\n' + 'Device set to use cpu'
# Compute truth score
truth_score = calculate_truthfulness_score(info=news_text, context=context)
truth_percentage = truth_score * 100 # Convert to percentage
# Determine truth status
if truth_score > 0.7:
status = f"**{truth_percentage:.0f}% chances to be true** - This news is likely true."
elif truth_score > 0.4:
status = f"**{truth_percentage:.0f}% chances to be true** - This news is uncertain. Please verify further."
else:
status = f"**{truth_percentage:.0f}% chances to be true** - This news is unlikely to be true. Proceed with caution."
# Save result in database if connection is available
if db is not None:
db.save_news_verification(news_text[:100], truth_score, first_citation)
# Initial result
result = f"**News:** \"{news_text[:300]}...\"\n\n"
result += f"**Truthfulness Score:** {truth_score:.2f} ({status})\n\n"
yield result # Display initial results
# Generate explanation asynchronously
future_explanation = executor.submit(generate_explanation, news_text, context, truth_score)
explanation = future_explanation.result()
if explanation:
result += f"**Explanation:** {explanation}\n\n"
# Display sources
if citations:
result += "\n**Sources & References:**\n"
for i, source in enumerate(citations[:5]): # Show up to 5 sources
result += f"{i + 1}. [{source}]({source})\n"
yield result # Final output with sources
except Exception as e:
yield f"**Error:** {str(e)}"
# Function to fetch dashboard data
def fetch_dashboard_data():
if db is None:
return "**⚠️ Database unavailable. Recent verification records cannot be displayed.**"
total_news = db.get_total_news_count()
last_10_news = db.get_last_10_news()
# Generate table-style layout for recent verifications
dashboard_info = f"**Total News Verified:** {total_news}\n\n"
if last_10_news:
table = "| # | News Title | Score (%) | Date Verified | Citation |\n"
table += "|---|------------|-----------|--------------|----------|\n"
for i, news in enumerate(last_10_news, start=1):
truth_percentage = news['score'] * 100 # Convert to percentage
citation = f"[Source]({news['citation']})" if news['citation'] != "N/A" else "N/A"
table += f"| {i} | {news['title'][:50]}... | {truth_percentage:.0f}% | {news['timestamp']} | {citation} |\n"
dashboard_info += table
else:
dashboard_info += "_No records found._"
return dashboard_info
# Gradio Interface
with gr.Blocks(css="""
.gradio-container { font-family: 'Georgia', serif; font-size: 16px; }
h1, h2, h3 { font-family: 'Times New Roman', serif; }
table { width: 100%; border-collapse: collapse; }
th, td { padding: 10px; border: 1px solid #ddd; text-align: left; }
""") as demo:
with gr.Tabs() as tabs:
with gr.Tab("πŸ” Verify News"):
gr.Markdown("# πŸ“° EchoTruth: News Verification")
gr.Markdown("""
**How it Works:**
- Enter a news article **or** a URL.
- Click **Check Truthfulness**.
- Get a **truth score**, an explanation, and references.
""")
input_box = gr.Textbox(placeholder="Paste news text or URL...", label="News Input", lines=5)
submit_btn = gr.Button("Check Truthfulness")
output_box = gr.Markdown()
submit_btn.click(fn=evaluate_news, inputs=[input_box], outputs=[output_box])
with gr.Tab("πŸ“Š Dashboard") as dashboard_tab:
gr.Markdown("# πŸ“Š Verification Dashboard")
dashboard_output = gr.Markdown("_Click 'Refresh Data' to load latest records._")
refresh_btn = gr.Button("πŸ”„ Refresh Data")
refresh_btn.click(fn=fetch_dashboard_data, inputs=[], outputs=[dashboard_output])
gr.Markdown("### **About EchoTruth**")
gr.Markdown("EchoTruth uses AI to help users verify news authenticity in real-time.")
demo.launch()