added modules file
Browse files- modules/__init__.py +0 -0
- modules/knowledge_graph.py +21 -0
- modules/online_search.py +46 -0
- modules/validation.py +6 -0
modules/__init__.py
ADDED
File without changes
|
modules/knowledge_graph.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import faiss
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
def search_kg(query, index_path, dataset_path, top_k=5):
|
7 |
+
index = faiss.read_index(index_path)
|
8 |
+
df = pd.read_json(dataset_path, lines=True)
|
9 |
+
|
10 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
11 |
+
query_embedding = model.encode([query], convert_to_tensor=True).cpu().numpy()
|
12 |
+
distances, indices = index.search(query_embedding, top_k)
|
13 |
+
|
14 |
+
results = []
|
15 |
+
for i in range(top_k):
|
16 |
+
idx = indices[0][i]
|
17 |
+
if 0 <= idx < len(df):
|
18 |
+
headline = df.iloc[idx]['headline']
|
19 |
+
description = df.iloc[idx]['short_description']
|
20 |
+
results.append(f"{headline}. {description}")
|
21 |
+
return " ".join(results)
|
modules/online_search.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
|
3 |
+
def search_online(query, api_key, base_url, model):
|
4 |
+
messages = [
|
5 |
+
{
|
6 |
+
"role": "system",
|
7 |
+
"content": (
|
8 |
+
"You are an artificial intelligence assistant and you need to "
|
9 |
+
"engage in a helpful, detailed, polite conversation with a user."
|
10 |
+
),
|
11 |
+
},
|
12 |
+
{"role": "user", "content": query},
|
13 |
+
]
|
14 |
+
|
15 |
+
client = OpenAI(api_key=api_key, base_url=base_url)
|
16 |
+
response = client.chat.completions.create(
|
17 |
+
model=model,
|
18 |
+
messages=messages,
|
19 |
+
)
|
20 |
+
|
21 |
+
# print(type(response))
|
22 |
+
# print(response)
|
23 |
+
# print(vars(response))
|
24 |
+
result = process_result(response)
|
25 |
+
return result
|
26 |
+
|
27 |
+
def process_result(response):
|
28 |
+
# Create a dictionary to hold all the individual pieces of information
|
29 |
+
response_dict = {
|
30 |
+
# 'finish_reason': response.choices[0].finish_reason,
|
31 |
+
# 'index': response.choices[0].index,
|
32 |
+
'message_content': response.choices[0].message.content,
|
33 |
+
# 'delta_role': response.choices[0].delta['role'] if response.choices[0].delta else None,
|
34 |
+
# 'delta_content': response.choices[0].delta['content'] if response.choices[0].delta else None,
|
35 |
+
# 'created': response.created,
|
36 |
+
# 'object': response.object,
|
37 |
+
# 'usage_completions_tokens': response.usage.completion_tokens,
|
38 |
+
'citations': response.citations # Assuming `citations` is part of the response object
|
39 |
+
}
|
40 |
+
|
41 |
+
return response_dict
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
# result = search_online("", "", "", "")
|
46 |
+
# print(result)
|
modules/validation.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
def calculate_truthfulness_score(info, context):
|
4 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
5 |
+
result = classifier(info, [context], multi_label=False)
|
6 |
+
return result['scores'][0]
|