import gradio as gr from newspaper import Article from modules.online_search import search_online from modules.validation import calculate_truthfulness_score from modules.knowledge_graph import search_kg from modules.generate_explanation import generate_explanation from dotenv import load_dotenv import os from concurrent.futures import ThreadPoolExecutor from modules.record import DatabaseComponent # Import DatabaseComponent # Load environment variables load_dotenv() # Initialize database (handle connection failures) db = None try: db = DatabaseComponent() except Exception as e: print(f"[ERROR] Database connection failed: {str(e)}") # Initialize thread executor executor = ThreadPoolExecutor(max_workers=3) # Constants for file paths and API keys KG_INDEX_PATH = "KG/news_category_index.faiss" KG_DATASET_PATH = "KG/News_Category_Dataset_v3.json" SEARCH_API_KEY = os.getenv("SEARCH_API_KEY") SEARCH_BASE_URL = os.getenv("SEARCH_BASE_URL") SEARCH_MODEL = os.getenv("SEARCH_MODEL") # Function to process and verify news def evaluate_news(news_input): yield "**Processing... Please wait.** ⏳" # Handle URL input if news_input.startswith("http"): try: article = Article(news_input) article.download() article.parse() news_text = article.title + ". " + article.text except Exception as e: yield f"**Error processing the URL:** {str(e)}" return else: news_text = news_input try: # Run search tasks concurrently future_kg = executor.submit(search_kg, news_text, KG_INDEX_PATH, KG_DATASET_PATH) future_online = executor.submit(search_online, news_text, SEARCH_API_KEY, SEARCH_BASE_URL, SEARCH_MODEL) # Wait for results kg_content = future_kg.result() online_search_results = future_online.result() # Extract citations from the search results citations = online_search_results.get("citations", []) # List of sources first_citation = citations[0] if citations else "N/A" # Store first citation in DB # Combine context context = online_search_results['message_content'] + '\n' + kg_content + '\n' + 'Device set to use cpu' # Compute truth score truth_score = calculate_truthfulness_score(info=news_text, context=context) truth_percentage = truth_score * 100 # Convert to percentage # Determine truth status if truth_score > 0.7: status = f"**{truth_percentage:.0f}% chances to be true** - This news is likely true." elif truth_score > 0.4: status = f"**{truth_percentage:.0f}% chances to be true** - This news is uncertain. Please verify further." else: status = f"**{truth_percentage:.0f}% chances to be true** - This news is unlikely to be true. Proceed with caution." # Save result in database if connection is available if db is not None: db.save_news_verification(news_text[:100], truth_score, first_citation) # Initial result result = f"**News:** \"{news_text[:300]}...\"\n\n" result += f"**Truthfulness Score:** {truth_score:.2f} ({status})\n\n" yield result # Display initial results # Generate explanation asynchronously future_explanation = executor.submit(generate_explanation, news_text, context, truth_score) explanation = future_explanation.result() if explanation: result += f"**Explanation:** {explanation}\n\n" # Display sources if citations: result += "\n**Sources & References:**\n" for i, source in enumerate(citations[:5]): # Show up to 5 sources result += f"{i + 1}. [{source}]({source})\n" yield result # Final output with sources except Exception as e: yield f"**Error:** {str(e)}" # Function to fetch dashboard data def fetch_dashboard_data(): if db is None: return "**⚠️ Database unavailable. Recent verification records cannot be displayed.**" total_news = db.get_total_news_count() last_10_news = db.get_last_10_news() # Generate table-style layout for recent verifications dashboard_info = f"**Total News Verified:** {total_news}\n\n" if last_10_news: table = "| # | News Title | Score (%) | Date Verified | Citation |\n" table += "|---|------------|-----------|--------------|----------|\n" for i, news in enumerate(last_10_news, start=1): truth_percentage = news['score'] * 100 # Convert to percentage citation = f"[Source]({news['citation']})" if news['citation'] != "N/A" else "N/A" table += f"| {i} | {news['title'][:50]}... | {truth_percentage:.0f}% | {news['timestamp']} | {citation} |\n" dashboard_info += table else: dashboard_info += "_No records found._" return dashboard_info # Gradio Interface with gr.Blocks(css=""" .gradio-container { font-family: 'Georgia', serif; font-size: 16px; } h1, h2, h3 { font-family: 'Times New Roman', serif; } table { width: 100%; border-collapse: collapse; } th, td { padding: 10px; border: 1px solid #ddd; text-align: left; } """) as demo: with gr.Tabs() as tabs: with gr.Tab("🔍 Verify News"): gr.Markdown("# 📰 EchoTruth: News Verification") gr.Markdown(""" **How it Works:** - Enter a news article **or** a URL. - Click **Check Truthfulness**. - Get a **truth score**, an explanation, and references. """) input_box = gr.Textbox(placeholder="Paste news text or URL...", label="News Input", lines=5) submit_btn = gr.Button("Check Truthfulness") output_box = gr.Markdown() submit_btn.click(fn=evaluate_news, inputs=[input_box], outputs=[output_box]) with gr.Tab("📊 Dashboard") as dashboard_tab: gr.Markdown("# 📊 Verification Dashboard") dashboard_output = gr.Markdown("_Click 'Refresh Data' to load latest records._") refresh_btn = gr.Button("🔄 Refresh Data") refresh_btn.click(fn=fetch_dashboard_data, inputs=[], outputs=[dashboard_output]) gr.Markdown("### **About EchoTruth**") gr.Markdown("EchoTruth uses AI to help users verify news authenticity in real-time.") demo.launch()