Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import os
|
2 |
from pathlib import Path
|
3 |
import requests
|
4 |
-
import shutil
|
5 |
import torch
|
6 |
from threading import Event, Thread
|
7 |
from transformers import AutoConfig, AutoTokenizer
|
@@ -17,16 +16,18 @@ from llm_config import SUPPORTED_LLM_MODELS
|
|
17 |
# Initialize model language options
|
18 |
model_languages = list(SUPPORTED_LLM_MODELS)
|
19 |
|
20 |
-
# Gradio
|
21 |
with gr.Blocks() as iface:
|
|
|
22 |
model_language = gr.Dropdown(
|
23 |
choices=model_languages,
|
24 |
value=model_languages[0],
|
25 |
label="Model Language"
|
26 |
)
|
27 |
|
|
|
28 |
model_id = gr.Dropdown(
|
29 |
-
choices=[], # will be dynamically
|
30 |
label="Model",
|
31 |
value=None
|
32 |
)
|
@@ -34,34 +35,34 @@ with gr.Blocks() as iface:
|
|
34 |
# Function to update model_id dropdown choices based on model_language
|
35 |
def update_model_id(model_language_value):
|
36 |
model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
|
37 |
-
return gr.update(value=model_ids[0], choices=model_ids)
|
38 |
|
|
|
39 |
model_language.change(update_model_id, inputs=model_language, outputs=model_id)
|
40 |
|
41 |
-
#
|
42 |
prepare_int4_model = gr.Checkbox(
|
43 |
value=True,
|
44 |
label="Prepare INT4 Model"
|
45 |
)
|
46 |
|
47 |
-
#
|
48 |
enable_awq = gr.Checkbox(
|
49 |
value=False,
|
50 |
label="Enable AWQ",
|
51 |
-
visible=False
|
52 |
)
|
53 |
|
54 |
-
#
|
55 |
device = gr.Dropdown(
|
56 |
choices=["CPU", "GPU"],
|
57 |
value="CPU",
|
58 |
label="Device"
|
59 |
)
|
60 |
|
61 |
-
#
|
62 |
def get_model_path(model_language_value, model_id_value):
|
63 |
model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
|
64 |
-
pt_model_id = model_configuration["model_id"]
|
65 |
pt_model_name = model_id_value.split("-")[0]
|
66 |
int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
|
67 |
return model_configuration, int4_model_dir, pt_model_name
|
@@ -69,54 +70,44 @@ with gr.Blocks() as iface:
|
|
69 |
# Function to download the model if not already present
|
70 |
def download_model_if_needed(model_language_value, model_id_value):
|
71 |
model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
|
72 |
-
|
73 |
int4_weights = int4_model_dir / "openvino_model.bin"
|
74 |
-
|
75 |
if not int4_weights.exists():
|
76 |
print(f"Downloading model {model_id_value}...")
|
77 |
-
#
|
78 |
-
# Example:
|
79 |
-
# r = requests.get(model_configuration["model_url"])
|
80 |
-
# with open(int4_weights, "wb") as f:
|
81 |
-
# f.write(r.content)
|
82 |
-
|
83 |
return int4_model_dir
|
84 |
|
85 |
-
# Load the model
|
86 |
def load_model(model_language_value, model_id_value):
|
87 |
int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
91 |
core = ov.Core()
|
92 |
-
|
93 |
-
model_dir = int4_model_dir
|
94 |
-
model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
|
95 |
-
|
96 |
-
tok = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
97 |
ov_model = OVModelForCausalLM.from_pretrained(
|
98 |
-
|
99 |
-
device=device.value,
|
100 |
ov_config=ov_config,
|
101 |
-
config=AutoConfig.from_pretrained(
|
102 |
trust_remote_code=True
|
103 |
)
|
104 |
-
|
105 |
-
return tok, ov_model, model_configuration
|
106 |
|
107 |
-
# Gradio
|
108 |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
|
109 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
110 |
top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
|
111 |
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, label="Repetition Penalty")
|
112 |
|
113 |
-
# Conversation history
|
114 |
-
history = gr.State([])
|
115 |
|
116 |
-
#
|
117 |
def generate_response(history, temperature, top_p, top_k, repetition_penalty, model_language_value, model_id_value):
|
118 |
-
tok, ov_model
|
119 |
-
|
120 |
def convert_history_to_token(history):
|
121 |
input_tokens = tok(" ".join([msg[0] for msg in history]), return_tensors="pt").input_ids
|
122 |
return input_tokens
|
@@ -148,23 +139,15 @@ with gr.Blocks() as iface:
|
|
148 |
history[-1][1] = partial_text
|
149 |
yield history
|
150 |
|
151 |
-
#
|
152 |
iface = gr.Interface(
|
153 |
fn=generate_response,
|
154 |
-
inputs=[
|
155 |
-
history,
|
156 |
-
temperature,
|
157 |
-
top_p,
|
158 |
-
top_k,
|
159 |
-
repetition_penalty,
|
160 |
-
model_language,
|
161 |
-
model_id
|
162 |
-
],
|
163 |
outputs=[gr.Textbox(label="Conversation History"), history],
|
164 |
live=True,
|
165 |
title="OpenVINO Chatbot"
|
166 |
)
|
167 |
|
168 |
-
# Launch Gradio app
|
169 |
if __name__ == "__main__":
|
170 |
iface.launch(debug=True, share=True, server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import os
|
2 |
from pathlib import Path
|
3 |
import requests
|
|
|
4 |
import torch
|
5 |
from threading import Event, Thread
|
6 |
from transformers import AutoConfig, AutoTokenizer
|
|
|
16 |
# Initialize model language options
|
17 |
model_languages = list(SUPPORTED_LLM_MODELS)
|
18 |
|
19 |
+
# Define Gradio interface within a Blocks context
|
20 |
with gr.Blocks() as iface:
|
21 |
+
# Dropdown for model language selection
|
22 |
model_language = gr.Dropdown(
|
23 |
choices=model_languages,
|
24 |
value=model_languages[0],
|
25 |
label="Model Language"
|
26 |
)
|
27 |
|
28 |
+
# Dropdown for model ID, dynamically populated
|
29 |
model_id = gr.Dropdown(
|
30 |
+
choices=[], # will be populated dynamically
|
31 |
label="Model",
|
32 |
value=None
|
33 |
)
|
|
|
35 |
# Function to update model_id dropdown choices based on model_language
|
36 |
def update_model_id(model_language_value):
|
37 |
model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
|
38 |
+
return gr.Dropdown.update(value=model_ids[0], choices=model_ids)
|
39 |
|
40 |
+
# Update model_id choices when model_language changes
|
41 |
model_language.change(update_model_id, inputs=model_language, outputs=model_id)
|
42 |
|
43 |
+
# Checkbox for INT4 model preparation
|
44 |
prepare_int4_model = gr.Checkbox(
|
45 |
value=True,
|
46 |
label="Prepare INT4 Model"
|
47 |
)
|
48 |
|
49 |
+
# Checkbox for enabling AWQ (shown conditionally)
|
50 |
enable_awq = gr.Checkbox(
|
51 |
value=False,
|
52 |
label="Enable AWQ",
|
53 |
+
visible=False # visibility can be controlled in the UI logic
|
54 |
)
|
55 |
|
56 |
+
# Dropdown for device selection
|
57 |
device = gr.Dropdown(
|
58 |
choices=["CPU", "GPU"],
|
59 |
value="CPU",
|
60 |
label="Device"
|
61 |
)
|
62 |
|
63 |
+
# Function to retrieve model configuration and path
|
64 |
def get_model_path(model_language_value, model_id_value):
|
65 |
model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
|
|
|
66 |
pt_model_name = model_id_value.split("-")[0]
|
67 |
int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
|
68 |
return model_configuration, int4_model_dir, pt_model_name
|
|
|
70 |
# Function to download the model if not already present
|
71 |
def download_model_if_needed(model_language_value, model_id_value):
|
72 |
model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
|
|
|
73 |
int4_weights = int4_model_dir / "openvino_model.bin"
|
|
|
74 |
if not int4_weights.exists():
|
75 |
print(f"Downloading model {model_id_value}...")
|
76 |
+
# Download logic (e.g., requests.get(model_configuration["model_url"])) can go here
|
|
|
|
|
|
|
|
|
|
|
77 |
return int4_model_dir
|
78 |
|
79 |
+
# Load the model based on selected options
|
80 |
def load_model(model_language_value, model_id_value):
|
81 |
int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
|
82 |
+
ov_config = {
|
83 |
+
hints.performance_mode(): hints.PerformanceMode.LATENCY,
|
84 |
+
streams.num(): "1",
|
85 |
+
props.cache_dir(): ""
|
86 |
+
}
|
87 |
core = ov.Core()
|
88 |
+
tok = AutoTokenizer.from_pretrained(int4_model_dir, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
89 |
ov_model = OVModelForCausalLM.from_pretrained(
|
90 |
+
int4_model_dir,
|
91 |
+
device=device.value,
|
92 |
ov_config=ov_config,
|
93 |
+
config=AutoConfig.from_pretrained(int4_model_dir, trust_remote_code=True),
|
94 |
trust_remote_code=True
|
95 |
)
|
96 |
+
return tok, ov_model
|
|
|
97 |
|
98 |
+
# Gradio sliders for model generation parameters
|
99 |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
|
100 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
101 |
top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
|
102 |
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, label="Repetition Penalty")
|
103 |
|
104 |
+
# Conversation history state
|
105 |
+
history = gr.State([])
|
106 |
|
107 |
+
# Function to generate responses based on model and input
|
108 |
def generate_response(history, temperature, top_p, top_k, repetition_penalty, model_language_value, model_id_value):
|
109 |
+
tok, ov_model = load_model(model_language_value, model_id_value)
|
110 |
+
|
111 |
def convert_history_to_token(history):
|
112 |
input_tokens = tok(" ".join([msg[0] for msg in history]), return_tensors="pt").input_ids
|
113 |
return input_tokens
|
|
|
139 |
history[-1][1] = partial_text
|
140 |
yield history
|
141 |
|
142 |
+
# Set up the interface with inputs and outputs
|
143 |
iface = gr.Interface(
|
144 |
fn=generate_response,
|
145 |
+
inputs=[history, temperature, top_p, top_k, repetition_penalty, model_language, model_id],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
outputs=[gr.Textbox(label="Conversation History"), history],
|
147 |
live=True,
|
148 |
title="OpenVINO Chatbot"
|
149 |
)
|
150 |
|
151 |
+
# Launch the Gradio app
|
152 |
if __name__ == "__main__":
|
153 |
iface.launch(debug=True, share=True, server_name="0.0.0.0", server_port=7860)
|