File size: 6,840 Bytes
a2cee25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
from typing import List
import pandas as pd
import torch
import xgboost as xgb
from transformers import AutoTokenizer, BertForSequenceClassification
from tqdm import tqdm


class BertEmbedder:
    def __init__(self, tokenizer_path:str, model_path:str, cut_head:bool=False):
        """
            cut_head = True if the model have classifier head
        """
        self.embedder = BertForSequenceClassification.from_pretrained(model_path)
        self.max_length = self.embedder.config.max_position_embeddings
        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, max_length=self.max_length)

        if cut_head:
            self.embedder = self.embedder.bert

        self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
        print(f"Used device for BERT: {self.device }", flush=True)
        self.embedder.to(self.device)

    def __call__(self, text: str):
        encoded_input = self.tokenizer(text,
                                       return_tensors='pt',
                                       max_length=self.max_length,
                                       padding=True,
                                       truncation=True).to(self.device)
        model_output = self.embedder(**encoded_input)
        text_embed = model_output.pooler_output[0].cpu()
        return text_embed

    def batch_predict(self, texts: List[str]):
        encoded_input = self.tokenizer(texts,
                                       return_tensors='pt',
                                       max_length=self.max_length,
                                       padding=True,
                                       truncation=True).to(self.device)
        model_output = self.embedder(**encoded_input)
        texts_embeds = model_output.pooler_output.cpu()
        return texts_embeds


class PredictModel:
    def __init__(self, embedder, classifier_code, classifier_group, batch_size=8):
        self.batch_size = batch_size
        self.embedder = embedder
        self.classifier_code = classifier_code
        self.classifier_group = classifier_group

    def _texts2vecs(self, texts, logging=False):
        embeds = []
        batches_texts = np.array_split(texts, len(texts) // self.batch_size)
        if logging:
            iterator = tqdm(batches_texts)
        else:
            iterator = batches_texts
        for batch_texts in iterator:
            batch_texts = batch_texts.tolist()
            embeds += self.embedder.batch_predict(batch_texts).tolist()
        embeds = np.array(embeds)
        return embeds

    def fit(self, texts: List[str], labels: List[str], logging: bool=False):
        if logging:
            print('Start text2vec transform')
        embeds = self._texts2vecs(texts, logging)
        if logging:
            print('Start codes-classifier fitting')
        self.classifier_code.fit(embeds, labels)
        labels = [l.split('.')[0] for l in labels]
        if logging:
            print('Start groups-classifier fitting')
        self.classifier_group.fit(embeds, labels)

    def predict_code(self, texts: List[str], log: bool=False):
        if log:
            print('Start text2vec transform')
        embeds = self._texts2vecs(texts, log)
        if log:
            print('Start classifier prediction')
        prediction = self.classifier_code.predict(embeds)
        return prediction

    def predict_group(self, texts: List[str], logging: bool=False):
        if logging:
            print('Start text2vec transform')
        embeds = self._texts2vecs(texts, logging)
        if logging:
            print('Start classifier prediction')
        prediction = self.classifier_group.predict(embeds)
        return prediction

class CustomXGBoost:
    def __init__(self, use_gpu):
        if use_gpu:
            self.model = xgb.XGBClassifier(tree_method="gpu_hist")
        else:
            self.model = xgb.XGBClassifier()
        self.classes_ = None

    def fit(self, X, y, **kwargs):
        self.classes_ = np.unique(y).tolist()
        y = [self.classes_.index(l) for l in y]
        self.model.fit(X, y, **kwargs)

    def predict_proba(self, X):
        pred = self.model.predict_proba(X)
        return pred

    def predict(self, X):
        preds = self.model.predict_proba(X)
        return np.array([self.classes_[p] for p in np.argmax(preds, axis=1)])

class SimpleModel:
    def __init__(self):
        self.classes_ = None

    def fit(self, X, y):
        print(y[0])
        self.classes_ = [y[0]]

    def predict_proba(self, X):
        return np.array([[1.0]] * len(X))

def balance_dataset(labels_train_for_group, vecs_train_for_group, balance=None, logging=True):
    if balance == 'remove':
        min_len = -1
        for code_l in np.unique(labels_train_for_group):
            cur_len = sum(labels_train_for_group==code_l)
            if logging:
                print(code_l, cur_len)
            if min_len > cur_len or min_len==-1:
                min_len = cur_len
        if logging:
            print('min_len is', min_len)
        df_train_group = pd.DataFrame()
        df_train_group['labels'] = labels_train_for_group
        df_train_group['vecs'] = vecs_train_for_group.tolist()
        df_train_group = df_train_group.groupby('labels', as_index=False).apply(lambda array: array.loc[np.random.choice(array.index, min_len, False),:])
        labels_train_for_group = df_train_group['labels'].values
        vecs_train_for_group = [np.array(v) for v in df_train_group['vecs'].values]

    elif balance == 'duplicate':
        df_train_group = pd.DataFrame()
        df_train_group['labels'] = labels_train_for_group
        df_train_group['vecs'] = vecs_train_for_group.tolist()
        max_len = 0
        for code_data in df_train_group.groupby('labels'):
            cur_len = len(code_data[1])
            if logging:
                print(code_data[0], cur_len)
            if max_len < cur_len:
                max_len = cur_len
        if logging:
            print('max_len is ', max_len)
        labels_train_for_group = []
        vecs_train_for_group = []
        for code_data in df_train_group.groupby('labels'):
            cur_len = len(code_data[1])
            cur_labels = code_data[1]['labels'].values.tolist()
            cur_vecs = code_data[1]['vecs'].values.tolist()
            while cur_len < max_len:
                cur_len *= 2
                cur_labels += cur_labels
                cur_vecs += cur_vecs
            cur_labels = cur_labels[:max_len]
            cur_vecs = cur_vecs[:max_len]
            labels_train_for_group += cur_labels
            vecs_train_for_group += cur_vecs

        labels_train_for_group = np.array(labels_train_for_group)
        vecs_train_for_group = np.array(vecs_train_for_group)
    return labels_train_for_group, vecs_train_for_group