lyangas commited on
Commit
e1eb682
1 Parent(s): 21367e1

add first code-by-group model

Browse files
app.py CHANGED
@@ -6,7 +6,7 @@ import pickle
6
  import numpy as np
7
  import os
8
 
9
- from required_classes import BertEmbedder, PredictModel
10
 
11
 
12
  CLS_WEIGHTS = {'mlp': 0.3, 'svc': 0.4, 'xgboost': 0.3}
 
6
  import numpy as np
7
  import os
8
 
9
+ from required_classes import *
10
 
11
 
12
  CLS_WEIGHTS = {'mlp': 0.3, 'svc': 0.4, 'xgboost': 0.3}
classifiers/codes_in_groups/.test DELETED
File without changes
classifiers/codes_in_groups/L82_code_clf.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caaa8d9aee3aa4c349740be71f44ae034c36824b6fa9a765fa06dab88af265ea
3
+ size 327292
required_classes.py CHANGED
@@ -71,4 +71,34 @@ class PredictModel:
71
  if log:
72
  print('Start classifier prediction')
73
  prediction = self.classifier.predict(embeds)
74
- return prediction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  if log:
72
  print('Start classifier prediction')
73
  prediction = self.classifier.predict(embeds)
74
+ return prediction
75
+
76
+ class CustomXGBoost:
77
+ def __init__(self):
78
+ self.model = xgb.XGBClassifier()
79
+ self.classes_ = None
80
+
81
+ def fit(self, X, y):
82
+ self.classes_ = np.unique(y).tolist()
83
+ y = [self.classes_.index(l) for l in y]
84
+ self.model.fit(X, y)
85
+
86
+ def predict_proba(self, X):
87
+ pred = self.model.predict_proba(X)
88
+ return pred
89
+
90
+ def predict(self, X):
91
+ preds = self.model.predict_proba(X)
92
+ print(np.argmax(preds, axis=1), self.classes_)
93
+ print(preds.shape, preds[:2])
94
+ return self.classes_[np.argmax(preds, axis=1)]
95
+
96
+ class SimpleModel:
97
+ def __init__(self):
98
+ self.classes_ = None
99
+
100
+ def fit(self, X, y):
101
+ self.classes_ = [y[0]]
102
+
103
+ def predict_proba(self, X):
104
+ return np.array([1.0])