|
print('INFO: import modules') |
|
import base64 |
|
from flask import Flask, request |
|
import json |
|
import pickle |
|
import numpy as np |
|
import os |
|
|
|
from required_classes import * |
|
|
|
|
|
CLS_WEIGHTS = {'mlp': 0.3, 'svc': 0.4, 'xgboost': 0.3} |
|
|
|
print('INFO: loading models') |
|
try: |
|
with open('embedder/embedder.pkl', 'rb') as f: |
|
embedder = pickle.load(f) |
|
print('INFO: embedder loaded') |
|
except Exception as e: |
|
print(f"ERROR: loading embedder failed with: {str(e)}") |
|
|
|
print('Loading classifiers of codes') |
|
classifiers_codes = {} |
|
try: |
|
for clf_name in os.listdir('classifiers/codes'): |
|
if '.' == clf_name[0]: |
|
continue |
|
with open('classifiers/codes/'+clf_name, 'rb') as f: |
|
model = pickle.load(f) |
|
classifiers_codes[clf_name.split('.')[0]] = model |
|
print(f'INFO: codes classifier {clf_name} loaded') |
|
except Exception as e: |
|
print(f"ERROR: loading classifiers failed with: {str(e)}") |
|
|
|
print('Loading classifiers of groups') |
|
classifiers_groups = {} |
|
try: |
|
for clf_name in os.listdir('classifiers/groups'): |
|
if '.' == clf_name[0]: |
|
continue |
|
with open('classifiers/groups/'+clf_name, 'rb') as f: |
|
model = pickle.load(f) |
|
classifiers_groups[clf_name.split('.')[0]] = model |
|
print(f'INFO: groups classifier {clf_name} loaded') |
|
except Exception as e: |
|
print(f"ERROR: loading classifiers failed with: {str(e)}") |
|
|
|
print('Loading classifiers in groups') |
|
groups_models = {} |
|
try: |
|
for clf_name in os.listdir('classifiers/codes_in_groups'): |
|
if '.' == clf_name[0]: |
|
continue |
|
with open('classifiers/codes_in_groups/'+clf_name, 'rb') as f: |
|
model = pickle.load(f) |
|
group_name = clf_name.replace('_code_clf.pkl', '') |
|
groups_models[group_name] = model |
|
print(f'INFO: codes classifier for group {group_name} loaded') |
|
except Exception as e: |
|
print(f"ERROR: loading classifiers failed with: {str(e)}") |
|
|
|
|
|
def classify_code(text, top_n): |
|
embed = [embedder(text)] |
|
preds = {} |
|
for clf_name in classifiers_codes.keys(): |
|
model = classifiers_codes[clf_name] |
|
probs = model.predict_proba(embed) |
|
best_n = np.flip(np.argsort(probs, axis=1,)[0,-top_n:]) |
|
clf_preds = {str(model.classes_[i]): float(probs[0][i]) for i in best_n} |
|
preds[clf_name] = clf_preds |
|
return preds |
|
|
|
|
|
def classify_group(text, top_n): |
|
embed = [embedder(text)] |
|
preds = {} |
|
for clf_name in classifiers_groups.keys(): |
|
model = classifiers_groups[clf_name] |
|
probs = model.predict_proba(embed) |
|
best_n = np.flip(np.argsort(probs, axis=1,)[0,-top_n:]) |
|
clf_preds = {str(model.classes_[i]): float(probs[0][i]) for i in best_n} |
|
preds[clf_name] = clf_preds |
|
return preds |
|
|
|
def classify_code_by_group(text, group_name, top_n): |
|
embed = [embedder(text)] |
|
model = groups_models[group_name] |
|
probs = model.predict_proba(embed) |
|
best_n = np.flip(np.argsort(probs, axis=1,)[0,-top_n:]) |
|
|
|
top_n_preds = {str(model.classes_[i]): float(probs[0][i]) for i in best_n} |
|
top_cls = model.classes_[best_n[0]] |
|
all_codes_in_group = model.classes_ |
|
return top_cls, top_n_preds, all_codes_in_group |
|
|
|
def get_top_result(preds): |
|
total_scores = {} |
|
for clf_name, scores in preds.items(): |
|
clf_name = clf_name.replace('_codes', '').replace('_groups', '') |
|
for class_name, score in scores.items(): |
|
if class_name in total_scores: |
|
total_scores[class_name] += CLS_WEIGHTS[clf_name] * score |
|
else: |
|
total_scores[class_name] = CLS_WEIGHTS[clf_name] * score |
|
|
|
max_idx = np.array(total_scores.values()).argmax() |
|
if list(total_scores.values())[max_idx] > 0.5: |
|
return list(total_scores.keys())[max_idx] |
|
else: |
|
return None |
|
|
|
|
|
app = Flask(__name__) |
|
|
|
@app.get("/") |
|
def test_get(): |
|
return {'hello': 'world'} |
|
|
|
@app.route("/test", methods=['POST']) |
|
def test(): |
|
data = request.json |
|
return {'response': data} |
|
|
|
@app.route("/predict", methods=['POST']) |
|
def predict_api(): |
|
data = request.json |
|
base64_bytes = str(data['textB64']).encode("ascii") |
|
sample_string_bytes = base64.b64decode(base64_bytes) |
|
text = sample_string_bytes.decode("ascii") |
|
top_n = int(data['top_n']) |
|
|
|
if top_n < 1: |
|
return {'error': 'top_n should be geather than 0'} |
|
if text.strip() == '': |
|
return {'error': 'text is empty'} |
|
|
|
pred_codes = classify_code(text, top_n) |
|
pred_groups = classify_group(text, top_n) |
|
pred_codes_top = get_top_result(pred_codes) |
|
pred_groups_top = get_top_result(pred_groups) |
|
|
|
message_codes = 'models agree' if pred_codes_top is not None else 'models disagree' |
|
message_group = 'models agree' if pred_groups_top is not None else 'models disagree' |
|
result = { |
|
"icd10": |
|
{'result': pred_codes_top, 'details': pred_codes, 'message': message_codes}, |
|
"dx_group": |
|
{'result': pred_groups_top, 'details': pred_groups, 'message': message_group}, |
|
} |
|
return result |
|
|
|
@app.route("/predict_code", methods=['POST']) |
|
def predict_code_api(): |
|
data = request.json |
|
base64_bytes = str(data['textB64']).encode("ascii") |
|
sample_string_bytes = base64.b64decode(base64_bytes) |
|
text = sample_string_bytes.decode("ascii") |
|
top_n = int(data['top_n']) |
|
group_name = data['dx_group'] |
|
|
|
if top_n < 1: |
|
return {'error': 'top_n should be geather than 0'} |
|
if text.strip() == '': |
|
return {'error': 'text is empty'} |
|
if group_name not in groups_models: |
|
return {'error': 'have no classifier for the group'} |
|
|
|
top_pred_code, pred_codes, all_codes_in_group = classify_code_by_group(text, group_name, top_n) |
|
result = { |
|
"icd10": |
|
{ |
|
'result': top_pred_code, |
|
'probability': pred_codes[top_pred_code], |
|
'details': pred_codes, |
|
'all_codes': all_codes_in_group |
|
} |
|
} |
|
return result |
|
|
|
if __name__ == "__main__": |
|
app.run(host='0.0.0.0', port=7860) |
|
|