|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from sklearn.metrics import accuracy_score, fbeta_score, confusion_matrix, ConfusionMatrixDisplay |
|
from sklearn.utils.class_weight import compute_sample_weight |
|
import pickle as pkl |
|
from tqdm import tqdm |
|
import time |
|
import os |
|
import shutil |
|
import json |
|
from copy import deepcopy |
|
|
|
from helpers.required_classes import * |
|
|
|
|
|
def log(*args): |
|
print(*args, flush=True) |
|
|
|
def train_code_classifier(vecs_train_codes, vecs_test_for_groups, |
|
labels_train_codes, labels_test_groups_codes, labels_test_groups_groups, |
|
labels_train_groups, |
|
models_folder, group_name, balance=None, logging=True, use_gpu=True): |
|
""" |
|
balance - is a type of balancing dataset: |
|
remove - remove items per class until amount texts per clas is not the same as minimum amount |
|
duplicate - duplicate items per class until amount texts per clas is not the same as maximum amount |
|
weight - weighted training model |
|
None - without any balancing method |
|
""" |
|
|
|
log(f"training model for codes classifiers in group {group_name}") |
|
|
|
|
|
experiment_path = f"{models_folder}/{group_name}" |
|
if not os.path.exists(experiment_path): |
|
os.makedirs(experiment_path, exist_ok=True) |
|
else: |
|
shutil.rmtree(experiment_path) |
|
os.makedirs(experiment_path, exist_ok=True) |
|
|
|
labels_train_for_group = labels_train_codes[labels_train_groups==group_name] |
|
if logging: |
|
log(f"e.g. labels in the group: {labels_train_for_group[:3]} cng of codes: {len(np.unique(labels_train_for_group))} cnt of texts: {len(labels_train_for_group)}") |
|
|
|
|
|
if len(np.unique(labels_train_for_group)) < 2: |
|
|
|
code_name = labels_train_for_group[0] |
|
if logging: |
|
log(f'group {group_name} have only one code inside {code_name}') |
|
simple_clf = SimpleModel() |
|
simple_clf.fit([], [code_name]) |
|
pkl.dump(simple_clf, open(f"{experiment_path}/{group_name}_code_clf.pkl", 'wb')) |
|
return {"f1_score": 'one_cls', "accuracy": 'one_cls'} |
|
|
|
sample_weights = compute_sample_weight( |
|
class_weight='balanced', |
|
y=labels_train_for_group |
|
) |
|
|
|
|
|
vecs_train_for_group = vecs_train_codes[labels_train_groups==group_name] |
|
vecs_test_for_group = vecs_test_for_groups[labels_test_groups_groups==group_name] |
|
labels_test_for_group = labels_test_groups_codes[labels_test_groups_groups==group_name] |
|
|
|
labels_train_for_group, vecs_train_for_group = balance_dataset( |
|
labels_train_for_group, vecs_train_for_group, balance=balance |
|
) |
|
|
|
fit_start_time = time.time() |
|
model = CustomXGBoost(use_gpu) |
|
|
|
if balance == 'weight': |
|
model.fit(vecs_train_for_group, labels_train_for_group, sample_weight=sample_weights) |
|
else: |
|
model.fit(vecs_train_for_group, labels_train_for_group) |
|
|
|
pkl.dump(model, open(f"{experiment_path}/{group_name}_code_clf.pkl", 'wb')) |
|
if logging: |
|
log(f'Trained in {time.time() - fit_start_time}s') |
|
|
|
pred_start_time = time.time() |
|
predictions_group = model.predict(vecs_test_for_group) |
|
scores = { |
|
"f1_score": fbeta_score(labels_test_for_group, predictions_group, beta=1, average='macro'), |
|
"accuracy": accuracy_score(labels_test_for_group, predictions_group) |
|
} |
|
if logging: |
|
log(scores, f'Predicted in {time.time() - pred_start_time}s') |
|
with open(f"{experiment_path}/{group_name}_scores.json", 'w') as f: |
|
f.write(json.dumps(scores)) |
|
|
|
conf_matrix = confusion_matrix(labels_test_for_group, predictions_group) |
|
disp_code = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, |
|
display_labels=model.classes_, ) |
|
fig, ax = plt.subplots(figsize=(5,5)) |
|
disp_code.plot(ax=ax) |
|
plt.xticks(rotation=90) |
|
plt.savefig(f"{experiment_path}/{group_name}_matrix.png") |
|
|
|
return scores |
|
|
|
def train_codes_for_groups(vecs_train_codes, vecs_test_groups, |
|
labels_train_codes, labels_test_groups_codes, labels_test_groups_groups, |
|
labels_train_groups, |
|
output_path, logging, use_gpu=True): |
|
all_scores = [] |
|
for group_name in tqdm(np.unique(labels_train_groups)): |
|
row = {'group': group_name} |
|
for balanced_method in ['weight']: |
|
if logging: |
|
log('\n', '-'*50) |
|
scores = train_code_classifier(vecs_train_codes, vecs_test_groups, |
|
labels_train_codes, labels_test_groups_codes, labels_test_groups_groups, |
|
labels_train_groups, |
|
output_path, group_name, balanced_method, logging, use_gpu) |
|
scores = {f"{balanced_method}_{k}": v for k, v in scores.items()} |
|
row.update(scores) |
|
all_scores.append(row) |
|
|
|
df = pd.DataFrame(all_scores) |
|
columns = df.columns.tolist() |
|
columns.remove('group') |
|
mean_scores = {'group': 'MEAN'} |
|
for score_name in columns: |
|
mean_score = df[df[score_name] != 'one_cls'][score_name].mean() |
|
mean_scores.update({score_name: float(mean_score)}) |
|
df = pd.concat([df, pd.DataFrame([mean_scores])], ignore_index=True) |
|
return df |
|
|
|
def make_experiment_classifier(vecs_train_codes, vecs_test_codes, vecs_test_group, |
|
labels_train_codes, labels_test_codes, |
|
labels_test_groups, labels_train_groups, |
|
sample_weights_codes, sample_weights_groups, |
|
texts_test_codes, texts_test_groups, |
|
experiment_name, classifier_model_code, classifier_model_group, experiment_path, balance=None): |
|
|
|
|
|
log(f'Model: {experiment_name}') |
|
|
|
experiment_path = f"{experiment_path}/{experiment_name}" |
|
if not os.path.exists(experiment_path): |
|
os.makedirs(experiment_path, exist_ok=True) |
|
else: |
|
shutil.rmtree(experiment_path) |
|
os.makedirs(experiment_path, exist_ok=True) |
|
|
|
|
|
cls_codes = deepcopy(classifier_model_code) |
|
cls_groups = deepcopy(classifier_model_group) |
|
|
|
labels_train_codes_balanced, vecs_train_codes_balanced = balance_dataset( |
|
labels_train_codes, vecs_train_codes, balance=balance |
|
) |
|
labels_train_groups_balanced, vecs_train_codes_balanced = balance_dataset( |
|
labels_train_groups, vecs_train_codes, balance=balance |
|
) |
|
|
|
log('start training base model') |
|
if balance == 'weight': |
|
try: |
|
start_time = time.time() |
|
cls_codes.fit(vecs_train_codes_balanced, labels_train_codes_balanced, sample_weight=sample_weights_codes) |
|
log(f'codes classify trained in {(time.time() - start_time) / 60}m') |
|
start_time = time.time() |
|
cls_groups.fit(vecs_train_codes_balanced, labels_train_groups_balanced, sample_weight=sample_weights_groups) |
|
log(f'groups classify trained in {(time.time() - start_time) / 60}m') |
|
except Exception as e: |
|
log(str(e)) |
|
start_time = time.time() |
|
cls_codes.fit(vecs_train_codes_balanced, labels_train_codes_balanced) |
|
log(f'codes classify trained in {(time.time() - start_time) / 60}m') |
|
start_time = time.time() |
|
cls_groups.fit(vecs_train_codes_balanced, labels_train_groups_balanced) |
|
log(f'groups classify trained in {(time.time() - start_time) / 60}m') |
|
else: |
|
start_time = time.time() |
|
cls_codes.fit(vecs_train_codes_balanced, labels_train_codes_balanced) |
|
log(f'codes classify trained in {(time.time() - start_time) / 60}m') |
|
start_time = time.time() |
|
cls_groups.fit(vecs_train_codes_balanced, labels_train_groups_balanced) |
|
log(f'groups classify trained in {(time.time() - start_time) / 60}m') |
|
|
|
pkl.dump(cls_codes, open(f"{experiment_path}/{experiment_name}_codes.pkl", 'wb')) |
|
pkl.dump(cls_groups, open(f"{experiment_path}/{experiment_name}_groups.pkl", 'wb')) |
|
|
|
|
|
predictions_code = cls_codes.predict(vecs_test_codes) |
|
predictions_group = cls_groups.predict(vecs_test_group) |
|
scores = { |
|
"f1_score_code": fbeta_score(labels_test_codes, predictions_code, beta=1, average='macro'), |
|
"f1_score_group": fbeta_score(labels_test_groups, predictions_group, beta=1, average='macro'), |
|
"accuracy_code": accuracy_score(labels_test_codes, predictions_code), |
|
"accuracy_group": accuracy_score(labels_test_groups, predictions_group) |
|
} |
|
with open(f"{experiment_path}/{experiment_name}_scores.json", 'w') as f: |
|
f.write(json.dumps(scores)) |
|
|
|
conf_matrix = confusion_matrix(labels_test_codes, predictions_code) |
|
disp_code = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, |
|
display_labels=cls_codes.classes_, ) |
|
fig, ax = plt.subplots(figsize=(20,20)) |
|
disp_code.plot(ax=ax) |
|
plt.xticks(rotation=90) |
|
plt.savefig(f"{experiment_path}/{experiment_name}_codes_matrix.png") |
|
|
|
conf_matrix = confusion_matrix(labels_test_groups, predictions_group) |
|
disp_group = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, |
|
display_labels=cls_groups.classes_, ) |
|
|
|
fig, ax = plt.subplots(figsize=(20,20)) |
|
disp_group.plot(ax=ax) |
|
plt.xticks(rotation=90) |
|
plt.savefig(f"{experiment_path}/{experiment_name}_groups_matrix.png") |
|
|
|
pd.DataFrame({'codes': predictions_code, 'truth': labels_test_codes, 'text': texts_test_codes}).to_csv(f"{experiment_path}/{experiment_name}_pred_codes.csv") |
|
pd.DataFrame({'groups': predictions_group, 'truth': labels_test_groups, 'text': texts_test_groups}).to_csv(f"{experiment_path}/{experiment_name}_pred_groups.csv") |
|
return predictions_code, predictions_group, scores |
|
|
|
def train_base_clfs(classifiers, vecs_train_codes, vecs_test_codes, vecs_test_group, |
|
labels_train_codes, labels_test_codes, |
|
labels_test_groups_codes, labels_test_groups_groups, labels_train_groups, |
|
sample_weights_codes, sample_weights_groups, |
|
texts_test_codes, texts_test_groups, output_path): |
|
results = '' |
|
for experiment_data in classifiers: |
|
for balanced_method in ['weight']: |
|
exp_name = experiment_data['name'] |
|
cls_model = experiment_data['model'] |
|
_, _, scores = make_experiment_classifier(vecs_train_codes, vecs_test_codes, vecs_test_group, |
|
labels_train_codes, labels_test_codes, |
|
labels_test_groups_groups, labels_train_groups, |
|
sample_weights_codes, sample_weights_groups, |
|
texts_test_codes, texts_test_groups, |
|
exp_name, cls_model, cls_model, output_path, balance=None) |
|
res = f"\n\n{exp_name} balanced by: {balanced_method} scores: {scores}" |
|
results += res |
|
log(res) |
|
return results |
|
|