|
import numpy as np |
|
from typing import List |
|
import pandas as pd |
|
import torch |
|
import xgboost as xgb |
|
from transformers import AutoTokenizer, BertForSequenceClassification |
|
from tqdm import tqdm |
|
|
|
|
|
class BertEmbedder: |
|
def __init__(self, tokenizer_path:str, model_path:str, cut_head:bool=False): |
|
""" |
|
cut_head = True if the model have classifier head |
|
""" |
|
self.embedder = BertForSequenceClassification.from_pretrained(model_path) |
|
self.max_length = self.embedder.config.max_position_embeddings |
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, max_length=self.max_length) |
|
|
|
if cut_head: |
|
self.embedder = self.embedder.bert |
|
|
|
self.device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
print(f"Used device for BERT: {self.device }", flush=True) |
|
self.embedder.to(self.device) |
|
|
|
def __call__(self, text: str): |
|
encoded_input = self.tokenizer(text, |
|
return_tensors='pt', |
|
max_length=self.max_length, |
|
padding=True, |
|
truncation=True).to(self.device) |
|
model_output = self.embedder(**encoded_input) |
|
text_embed = model_output.pooler_output[0].cpu() |
|
return text_embed |
|
|
|
def batch_predict(self, texts: List[str]): |
|
encoded_input = self.tokenizer(texts, |
|
return_tensors='pt', |
|
max_length=self.max_length, |
|
padding=True, |
|
truncation=True).to(self.device) |
|
model_output = self.embedder(**encoded_input) |
|
texts_embeds = model_output.pooler_output.cpu() |
|
return texts_embeds |
|
|
|
|
|
class PredictModel: |
|
def __init__(self, embedder, classifier_code, classifier_group, batch_size=8): |
|
self.batch_size = batch_size |
|
self.embedder = embedder |
|
self.classifier_code = classifier_code |
|
self.classifier_group = classifier_group |
|
|
|
def _texts2vecs(self, texts, logging=False): |
|
embeds = [] |
|
batches_texts = np.array_split(texts, len(texts) // self.batch_size) |
|
if logging: |
|
iterator = tqdm(batches_texts) |
|
else: |
|
iterator = batches_texts |
|
for batch_texts in iterator: |
|
batch_texts = batch_texts.tolist() |
|
embeds += self.embedder.batch_predict(batch_texts).tolist() |
|
embeds = np.array(embeds) |
|
return embeds |
|
|
|
def fit(self, texts: List[str], labels: List[str], logging: bool=False): |
|
if logging: |
|
print('Start text2vec transform') |
|
embeds = self._texts2vecs(texts, logging) |
|
if logging: |
|
print('Start codes-classifier fitting') |
|
self.classifier_code.fit(embeds, labels) |
|
labels = [l.split('.')[0] for l in labels] |
|
if logging: |
|
print('Start groups-classifier fitting') |
|
self.classifier_group.fit(embeds, labels) |
|
|
|
def predict_code(self, texts: List[str], log: bool=False): |
|
if log: |
|
print('Start text2vec transform') |
|
embeds = self._texts2vecs(texts, log) |
|
if log: |
|
print('Start classifier prediction') |
|
prediction = self.classifier_code.predict(embeds) |
|
return prediction |
|
|
|
def predict_group(self, texts: List[str], logging: bool=False): |
|
if logging: |
|
print('Start text2vec transform') |
|
embeds = self._texts2vecs(texts, logging) |
|
if logging: |
|
print('Start classifier prediction') |
|
prediction = self.classifier_group.predict(embeds) |
|
return prediction |
|
|
|
class CustomXGBoost: |
|
def __init__(self, use_gpu): |
|
if use_gpu: |
|
self.model = xgb.XGBClassifier(tree_method="gpu_hist") |
|
else: |
|
self.model = xgb.XGBClassifier() |
|
self.classes_ = None |
|
|
|
def fit(self, X, y, **kwargs): |
|
self.classes_ = np.unique(y).tolist() |
|
y = [self.classes_.index(l) for l in y] |
|
self.model.fit(X, y, **kwargs) |
|
|
|
def predict_proba(self, X): |
|
pred = self.model.predict_proba(X) |
|
return pred |
|
|
|
def predict(self, X): |
|
preds = self.model.predict_proba(X) |
|
return np.array([self.classes_[p] for p in np.argmax(preds, axis=1)]) |
|
|
|
class SimpleModel: |
|
def __init__(self): |
|
self.classes_ = None |
|
|
|
def fit(self, X, y): |
|
print(y[0]) |
|
self.classes_ = [y[0]] |
|
|
|
def predict_proba(self, X): |
|
return np.array([[1.0]] * len(X)) |
|
|
|
def balance_dataset(labels_train_for_group, vecs_train_for_group, balance=None, logging=True): |
|
if balance == 'remove': |
|
min_len = -1 |
|
for code_l in np.unique(labels_train_for_group): |
|
cur_len = sum(labels_train_for_group==code_l) |
|
if logging: |
|
print(code_l, cur_len) |
|
if min_len > cur_len or min_len==-1: |
|
min_len = cur_len |
|
if logging: |
|
print('min_len is', min_len) |
|
df_train_group = pd.DataFrame() |
|
df_train_group['labels'] = labels_train_for_group |
|
df_train_group['vecs'] = vecs_train_for_group.tolist() |
|
df_train_group = df_train_group.groupby('labels', as_index=False).apply(lambda array: array.loc[np.random.choice(array.index, min_len, False),:]) |
|
labels_train_for_group = df_train_group['labels'].values |
|
vecs_train_for_group = [np.array(v) for v in df_train_group['vecs'].values] |
|
|
|
elif balance == 'duplicate': |
|
df_train_group = pd.DataFrame() |
|
df_train_group['labels'] = labels_train_for_group |
|
df_train_group['vecs'] = vecs_train_for_group.tolist() |
|
max_len = 0 |
|
for code_data in df_train_group.groupby('labels'): |
|
cur_len = len(code_data[1]) |
|
if logging: |
|
print(code_data[0], cur_len) |
|
if max_len < cur_len: |
|
max_len = cur_len |
|
if logging: |
|
print('max_len is ', max_len) |
|
labels_train_for_group = [] |
|
vecs_train_for_group = [] |
|
for code_data in df_train_group.groupby('labels'): |
|
cur_len = len(code_data[1]) |
|
cur_labels = code_data[1]['labels'].values.tolist() |
|
cur_vecs = code_data[1]['vecs'].values.tolist() |
|
while cur_len < max_len: |
|
cur_len *= 2 |
|
cur_labels += cur_labels |
|
cur_vecs += cur_vecs |
|
cur_labels = cur_labels[:max_len] |
|
cur_vecs = cur_vecs[:max_len] |
|
labels_train_for_group += cur_labels |
|
vecs_train_for_group += cur_vecs |
|
|
|
labels_train_for_group = np.array(labels_train_for_group) |
|
vecs_train_for_group = np.array(vecs_train_for_group) |
|
return labels_train_for_group, vecs_train_for_group |