Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from model_utils.prm_model import PRM_MODEL
|
4 |
+
from model_utils.io_utils import prepare_input, prepare_batch_input_for_model, derive_step_rewards
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# 初始化模型和tokenizer (和你现有代码一样)
|
8 |
+
model_id = "Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
10 |
+
model = PRM_MODEL.from_pretrained(model_id).to("cpu").eval()
|
11 |
+
|
12 |
+
def evaluate(problem, response):
|
13 |
+
processed_data = prepare_input(problem, response, tokenizer=tokenizer, step_token="\n")
|
14 |
+
input_ids, steps, reward_flags = [processed_data]
|
15 |
+
|
16 |
+
input_ids, attention_mask, reward_flags = prepare_batch_input_for_model(input_ids, reward_flags, tokenizer.pad_token_id)
|
17 |
+
input_ids = input_ids.to("cpu")
|
18 |
+
attention_mask = attention_mask.to("cpu")
|
19 |
+
|
20 |
+
with torch.no_grad():
|
21 |
+
_, _, rewards = model(input_ids=input_ids, attention_mask=attention_mask, return_probs=True)
|
22 |
+
|
23 |
+
step_rewards = derive_step_rewards(rewards, reward_flags)
|
24 |
+
return step_rewards[0].tolist()
|
25 |
+
|
26 |
+
# 创建Gradio界面
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=evaluate,
|
29 |
+
inputs=[
|
30 |
+
gr.Textbox(label="Problem"),
|
31 |
+
gr.Textbox(label="Response")
|
32 |
+
],
|
33 |
+
outputs=gr.JSON(label="Step Rewards"),
|
34 |
+
title="Problem Response Evaluation",
|
35 |
+
description="Enter a problem and its response to get step-wise rewards"
|
36 |
+
)
|
37 |
+
|
38 |
+
# 启动接口
|
39 |
+
iface.launch()
|