Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,26 @@
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
import sys
|
|
|
4 |
|
5 |
-
#
|
6 |
def setup_environment():
|
7 |
-
# 检查目录是否已存在
|
8 |
if not os.path.exists("skywork-o1-prm-inference"):
|
9 |
print("Cloning repository...")
|
10 |
subprocess.run(["git", "clone", "https://github.com/SkyworkAI/skywork-o1-prm-inference.git"], check=True)
|
11 |
-
|
12 |
-
# 添加到 Python 路径
|
13 |
repo_path = os.path.abspath("skywork-o1-prm-inference")
|
14 |
if repo_path not in sys.path:
|
15 |
sys.path.append(repo_path)
|
16 |
print(f"Added {repo_path} to Python path")
|
17 |
|
18 |
-
# 设置环境
|
19 |
setup_environment()
|
20 |
|
21 |
-
# 现在可以导入需要的模块
|
22 |
import gradio as gr
|
23 |
from transformers import AutoTokenizer
|
24 |
from model_utils.prm_model import PRM_MODEL
|
25 |
from model_utils.io_utils import prepare_input, prepare_batch_input_for_model, derive_step_rewards
|
26 |
import torch
|
27 |
|
28 |
-
# 初始化模型和tokenizer
|
29 |
model_id = "Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B"
|
30 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
31 |
model = PRM_MODEL.from_pretrained(model_id).to("cpu").eval()
|
@@ -33,9 +28,7 @@ model = PRM_MODEL.from_pretrained(model_id).to("cpu").eval()
|
|
33 |
def evaluate(problem, response):
|
34 |
try:
|
35 |
processed_data = prepare_input(problem, response, tokenizer=tokenizer, step_token="\n")
|
36 |
-
input_ids, steps, reward_flags = [processed_data]
|
37 |
-
|
38 |
-
input_ids, attention_mask, reward_flags = prepare_batch_input_for_model(
|
39 |
input_ids,
|
40 |
reward_flags,
|
41 |
tokenizer.pad_token_id
|
@@ -53,9 +46,10 @@ def evaluate(problem, response):
|
|
53 |
return_probs=True
|
54 |
)
|
55 |
step_rewards = derive_step_rewards(rewards, reward_flags)
|
56 |
-
|
|
|
57 |
except Exception as e:
|
58 |
-
return str(e)
|
59 |
|
60 |
# 创建Gradio界面
|
61 |
iface = gr.Interface(
|
@@ -64,16 +58,17 @@ iface = gr.Interface(
|
|
64 |
gr.Textbox(label="Problem", lines=4),
|
65 |
gr.Textbox(label="Response", lines=8)
|
66 |
],
|
67 |
-
outputs=gr.JSON(
|
68 |
title="Problem Response Evaluation",
|
69 |
description="Enter a problem and its response to get step-wise rewards",
|
70 |
examples=[
|
71 |
[
|
72 |
-
"Janet'
|
73 |
-
"To determine how much money Janet makes
|
74 |
]
|
75 |
-
]
|
|
|
76 |
)
|
77 |
|
78 |
# 启动接口
|
79 |
-
iface.launch()
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
import sys
|
4 |
+
import json
|
5 |
|
6 |
+
# 设置环境
|
7 |
def setup_environment():
|
|
|
8 |
if not os.path.exists("skywork-o1-prm-inference"):
|
9 |
print("Cloning repository...")
|
10 |
subprocess.run(["git", "clone", "https://github.com/SkyworkAI/skywork-o1-prm-inference.git"], check=True)
|
|
|
|
|
11 |
repo_path = os.path.abspath("skywork-o1-prm-inference")
|
12 |
if repo_path not in sys.path:
|
13 |
sys.path.append(repo_path)
|
14 |
print(f"Added {repo_path} to Python path")
|
15 |
|
|
|
16 |
setup_environment()
|
17 |
|
|
|
18 |
import gradio as gr
|
19 |
from transformers import AutoTokenizer
|
20 |
from model_utils.prm_model import PRM_MODEL
|
21 |
from model_utils.io_utils import prepare_input, prepare_batch_input_for_model, derive_step_rewards
|
22 |
import torch
|
23 |
|
|
|
24 |
model_id = "Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B"
|
25 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
26 |
model = PRM_MODEL.from_pretrained(model_id).to("cpu").eval()
|
|
|
28 |
def evaluate(problem, response):
|
29 |
try:
|
30 |
processed_data = prepare_input(problem, response, tokenizer=tokenizer, step_token="\n")
|
31 |
+
input_ids, steps, reward_flags = [processed_data]input_ids, attention_mask, reward_flags = prepare_batch_input_for_model(
|
|
|
|
|
32 |
input_ids,
|
33 |
reward_flags,
|
34 |
tokenizer.pad_token_id
|
|
|
46 |
return_probs=True
|
47 |
)
|
48 |
step_rewards = derive_step_rewards(rewards, reward_flags)
|
49 |
+
#确保返回的是有效的JSON字符串
|
50 |
+
return json.dumps(step_rewards[0].tolist())
|
51 |
except Exception as e:
|
52 |
+
return json.dumps({"error": str(e)})
|
53 |
|
54 |
# 创建Gradio界面
|
55 |
iface = gr.Interface(
|
|
|
58 |
gr.Textbox(label="Problem", lines=4),
|
59 |
gr.Textbox(label="Response", lines=8)
|
60 |
],
|
61 |
+
outputs=gr.JSON(),
|
62 |
title="Problem Response Evaluation",
|
63 |
description="Enter a problem and its response to get step-wise rewards",
|
64 |
examples=[
|
65 |
[
|
66 |
+
"Janet'sducks lay 16 eggs per day...",
|
67 |
+
"To determine how much money Janet makes..."
|
68 |
]
|
69 |
+
],
|
70 |
+
cache_examples=False# 禁用示例缓存
|
71 |
)
|
72 |
|
73 |
# 启动接口
|
74 |
+
iface.launch(server_name="0.0.0.0")
|