Spaces:
Sleeping
Sleeping
File size: 1,704 Bytes
61d18a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# 模型名称(官方仓库)
model_name = "Qwen/Qwen2.5-0.5B-Instruct"
# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
# 加载模型到 CPU
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
).to("cpu") # 显式移至CPU
# 简易对话函数
def predict(query, history=None):
if history is None:
history = []
# 编码输入
inputs = tokenizer(query, return_tensors="pt")
# 放到CPU张量上
input_ids = inputs["input_ids"].to("cpu")
attention_mask = inputs["attention_mask"].to("cpu")
# 推理
with torch.no_grad():
output_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=128,
do_sample=True,
top_p=0.9,
temperature=0.8
)
# 解码
output_text = tokenizer.decode(
output_ids[0][inputs["input_ids"].shape[1]:],
skip_special_tokens=True
)
# 更新对话历史
history.append((query, output_text))
return history, history
# 搭建 Gradio 界面
with gr.Blocks() as demo:
gr.Markdown("## Qwen2.5-0.5B-Instruct (CPU) 测试 Demo")
chatbot = gr.Chatbot(label="Qwen Chatbot")
msg = gr.Textbox(label="输入你的问题或对话")
state = gr.State([])
submit = gr.Button("发送")
submit.click(
fn=predict,
inputs=[msg, state],
outputs=[chatbot, state]
)
# 启动服务
demo.launch(server_name="0.0.0.0", server_port=7860)
|