File size: 1,704 Bytes
61d18a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# 模型名称(官方仓库)
model_name = "Qwen/Qwen2.5-0.5B-Instruct"

# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    trust_remote_code=True
)

# 加载模型到 CPU
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
).to("cpu")   # 显式移至CPU

# 简易对话函数
def predict(query, history=None):
    if history is None:
        history = []
        
    # 编码输入
    inputs = tokenizer(query, return_tensors="pt")
    # 放到CPU张量上
    input_ids = inputs["input_ids"].to("cpu")
    attention_mask = inputs["attention_mask"].to("cpu")
    
    # 推理
    with torch.no_grad():
        output_ids = model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            max_new_tokens=128,
            do_sample=True,
            top_p=0.9,
            temperature=0.8
        )
    
    # 解码
    output_text = tokenizer.decode(
        output_ids[0][inputs["input_ids"].shape[1]:],
        skip_special_tokens=True
    )
    
    # 更新对话历史
    history.append((query, output_text))
    return history, history

# 搭建 Gradio 界面
with gr.Blocks() as demo:
    gr.Markdown("## Qwen2.5-0.5B-Instruct (CPU) 测试 Demo")
    chatbot = gr.Chatbot(label="Qwen Chatbot")
    msg = gr.Textbox(label="输入你的问题或对话")
    state = gr.State([])

    submit = gr.Button("发送")
    submit.click(
        fn=predict,
        inputs=[msg, state],
        outputs=[chatbot, state]
    )

# 启动服务
demo.launch(server_name="0.0.0.0", server_port=7860)