File size: 30,914 Bytes
e17c9f2
 
 
 
 
 
 
 
 
 
 
a6a5155
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a5155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
e17c9f2
de0c71d
 
a6a5155
 
e17c9f2
a6a5155
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e60be
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b926e53
e17c9f2
 
 
b926e53
69e60be
e17c9f2
 
 
69e60be
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a5155
e17c9f2
 
 
a6a5155
 
e17c9f2
 
 
a6a5155
 
 
 
e17c9f2
 
 
a6a5155
 
e17c9f2
 
 
 
 
 
a6a5155
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b926e53
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
e17c9f2
de0c71d
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
 
e17c9f2
 
 
b926e53
e17c9f2
b926e53
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b926e53
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b926e53
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b926e53
e17c9f2
b926e53
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
 
e17c9f2
 
 
b926e53
e17c9f2
b926e53
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b926e53
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
e17c9f2
b926e53
e17c9f2
de0c71d
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
e17c9f2
de0c71d
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a5155
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
import torch
import itertools
import threading
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from collections import Counter, defaultdict
from loguru import logger
from abc import ABCMeta, abstractmethod
from .paper_client import PaperClient
from .paper_crawling import PaperCrawling
from .llms_api import APIHelper
from .hash import get_embedding_model


class UnionFind:
    def __init__(self, n):
        self.parent = list(range(n))
        self.rank = [1] * n

    def find(self, x):
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])
        return self.parent[x]

    def union(self, x, y):
        rootX = self.find(x)
        rootY = self.find(y)
        if rootX != rootY:
            if self.rank[rootX] > self.rank[rootY]:
                self.parent[rootY] = rootX
            elif self.rank[rootX] < self.rank[rootY]:
                self.parent[rootX] = rootY
            else:
                self.parent[rootY] = rootX
                self.rank[rootX] += 1


def can_merge(uf, similarity_matrix, i, j, threshold):
    root_i = uf.find(i)
    root_j = uf.find(j)
    for k in range(len(similarity_matrix)):
        if uf.find(k) == root_i or uf.find(k) == root_j:
            if (
                similarity_matrix[i][k] < threshold
                or similarity_matrix[j][k] < threshold
            ):
                return False
    return True


class CoCite:
    _instance = None
    _initialized = False

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super(CoCite, cls).__new__(cls)
        return cls._instance

    def __init__(self) -> None:
        if not self._initialized:
            self.paper_client = PaperClient()
            citemap = self.paper_client.build_citemap()
            self.comap = defaultdict(lambda: defaultdict(int))
            for paper_id, cited_id in citemap.items():
                for id0, id1 in itertools.combinations(cited_id, 2):
                    # ensure comap[id0][id1] == comap[id1][id0]
                    self.comap[id0][id1] += 1
                    self.comap[id1][id0] += 1
            logger.debug("init co-cite map success")
            CoCite._initialized = True

    def get_cocite_ids(self, id_, k=1):
        sorted_items = sorted(self.comap[id_].items(), key=lambda x: x[1], reverse=True)
        top_k = sorted_items[:k]
        paper_ids = []
        for item in top_k:
            paper_ids.append(item[0])
        paper_ids = self.paper_client.filter_paper_id_list(paper_ids)
        return paper_ids


class Retriever(object):
    __metaclass__ = ABCMeta
    retriever_name = "BASE"

    def __init__(self, config):
        self.config = config
        self.use_cocite = config.RETRIEVE.use_cocite
        self.use_cluster_to_filter = config.RETRIEVE.use_cluster_to_filter
        self.paper_client = PaperClient()
        self.cocite = CoCite()
        self.api_helper = APIHelper(config=config)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.embedding_model = get_embedding_model(config)
        self.paper_crawling = PaperCrawling(config=config)

    @abstractmethod
    def retrieve(self, bg, entities, use_evaluate):
        pass

    def retrieve_entities_by_enties(self, entities):
        # TODO: KG
        expand_entities = []
        for entity in entities:
            expand_entities += self.paper_client.find_related_entities_by_entity(
                entity,
                n=self.config.RETRIEVE.kg_jump_num,
                k=self.config.RETRIEVE.kg_cover_num,
                relation_name=self.config.RETRIEVE.relation_name,
            )
        expand_entities = list(set(entities + expand_entities))
        entity_paper_num_dict = {}
        for entity in expand_entities:
            entity_paper_num_dict[entity] = (
                self.paper_client.get_entity_related_paper_num(entity)
            )
        new_entities = []
        entity_paper_num_dict = {
            k: v for k, v in entity_paper_num_dict.items() if v != 0
        }
        entity_paper_num_dict = dict(
            sorted(entity_paper_num_dict.items(), key=lambda item: item[1])
        )
        sum_paper_num = 0
        for key, value in entity_paper_num_dict.items():
            if sum_paper_num <= self.config.RETRIEVE.sum_paper_num:
                sum_paper_num += value
                new_entities.append(key)
            elif (
                value < self.config.RETRIEVE.limit_num
                and sum_paper_num < self.config.RETRIEVE.sum_paper_num
            ):
                sum_paper_num += value
                new_entities.append(key)
        return new_entities

    def update_related_paper(self, paper_id_list):
        """
        Args:
            paper_id_list: list
        Return:
            related_paper: list(dict)
        """
        related_paper = []
        for paper_id in paper_id_list:
            paper = {"hash_id": paper_id}
            self.paper_client.update_paper_from_client(paper)
            related_paper.append(paper)
        return related_paper

    def calculate_similarity(self, entities, related_entities_list, use_weight=False):
        if use_weight:
            vec1 = self.vectorizer.transform([" ".join(entities)]).toarray()[0]
            weighted_vec1 = np.array(
                [
                    vec1[i] * self.log_inverse_freq.get(word, 1)
                    for i, word in enumerate(self.vectorizer.get_feature_names_out())
                ]
            )
            vecs2 = self.vectorizer.transform(
                [
                    " ".join(related_entities)
                    for related_entities in related_entities_list
                ]
            ).toarray()
            weighted_vecs2 = np.array(
                [
                    [
                        vec2[i] * self.log_inverse_freq.get(word, 1)
                        for i, word in enumerate(
                            self.vectorizer.get_feature_names_out()
                        )
                    ]
                    for vec2 in vecs2
                ]
            )
            similarity = cosine_similarity([weighted_vec1], weighted_vecs2)[0]
        else:
            vec1 = self.vectorizer.transform([" ".join(entities)])
            vecs2 = self.vectorizer.transform(
                [
                    " ".join(related_entities)
                    for related_entities in related_entities_list
                ]
            )
            similarity = cosine_similarity(vec1, vecs2)[0]
        return similarity

    def cal_related_score(
        self, embedding, related_paper_id_list, type_name="embedding"
    ):
        score_1 = np.zeros((len(related_paper_id_list)))
        score_2 = np.zeros((len(related_paper_id_list)))
        origin_vector = torch.tensor(embedding).to(self.device).unsqueeze(0)
        context_embeddings = [
            self.paper_client.get_paper_attribute(paper_id, type_name)
            for paper_id in related_paper_id_list
        ]
        if len(context_embeddings) > 0:
            context_embeddings = torch.tensor(context_embeddings).to(self.device)
            score_1 = torch.nn.functional.cosine_similarity(
                origin_vector, context_embeddings
            )
            score_1 = score_1.cpu().numpy()
            if self.config.RETRIEVE.need_normalize:
                score_1 = score_1 / np.max(score_1)
        score_sn_dict = dict(zip(related_paper_id_list, score_1))
        score_en_dict = dict(zip(related_paper_id_list, score_2))
        score_all_dict = dict(
            zip(
                related_paper_id_list,
                score_1 * self.config.RETRIEVE.alpha
                + score_2 * self.config.RETRIEVE.beta,
            )
        )
        return score_sn_dict, score_en_dict, score_all_dict

    def filter_related_paper(self, score_dict, top_k):
        if len(score_dict) <= top_k:
            return list(score_dict.keys())
        if not self.use_cluster_to_filter:
            paper_id_list = (
                list(score_dict.keys())[:top_k]
                if len(score_dict) >= top_k
                else list(score_dict.keys())
            )
            return paper_id_list
        else:
            # clustering filter, ensure that each category the highest score save first
            paper_id_list = list(score_dict.keys())
            paper_embedding_list = [
                self.paper_client.get_paper_attribute(paper_id, "embedding")
                for paper_id in paper_id_list
            ]
            paper_embedding = np.array(paper_embedding_list)
            paper_embedding_list = [
                self.paper_client.get_paper_attribute(
                    paper_id, "contribution_embedding"
                )
                for paper_id in paper_id_list
            ]
            paper_contribution_embedding = np.array(paper_embedding_list)
            paper_embedding_list = [
                self.paper_client.get_paper_attribute(paper_id, "summary_embedding")
                for paper_id in paper_id_list
            ]
            paper_summary_embedding = np.array(paper_embedding_list)
            weight_embedding = self.config.RETRIEVE.s_bg
            weight_contribution = self.config.RETRIEVE.s_contribution
            weight_summary = self.config.RETRIEVE.s_summary
            paper_embedding = (
                weight_embedding * paper_embedding
                + weight_contribution * paper_contribution_embedding
                + weight_summary * paper_summary_embedding
            )
            similarity_matrix = np.dot(paper_embedding, paper_embedding.T)
            related_labels = self.cluster_algorithm(paper_id_list, similarity_matrix)
            related_paper_label_dict = dict(zip(paper_id_list, related_labels))
            label_group = {}
            for paper_id, label in related_paper_label_dict.items():
                if label not in label_group:
                    label_group[label] = []
                label_group[label].append(paper_id)
            paper_id_list = []
            while len(paper_id_list) < top_k:
                for label, papers in label_group.items():
                    if papers:
                        paper_id_list.append(papers.pop(0))
                        if len(paper_id_list) >= top_k:
                            break
            return paper_id_list

    def cosine_similarity_search(self, embedding, k=1, type_name="embedding"):
        """
        return related paper: list
        """
        result = self.paper_client.cosine_similarity_search(
            embedding, k, type_name=type_name
        )
        # backtrack: first is itself
        result = result[1:]
        return result

    def cluster_algorithm(self, paper_id_list, similarity_matrix):
        threshold = self.config.RETRIEVE.similarity_threshold
        uf = UnionFind(len(paper_id_list))
        # merge
        for i in range(len(similarity_matrix)):
            for j in range(i + 1, len(similarity_matrix)):
                if similarity_matrix[i][j] >= threshold:
                    if can_merge(uf, similarity_matrix, i, j, threshold):
                        uf.union(i, j)
        cluster_labels = [uf.find(i) for i in range(len(similarity_matrix))]
        return cluster_labels

    def eval_related_paper_in_all(self, score_all_dict, target_paper_id_list):
        score_all_dict = dict(
            sorted(score_all_dict.items(), key=lambda item: item[1], reverse=True)
        )
        result = {}
        related_paper_id_list = list(score_all_dict.keys())
        if len(related_paper_id_list) == 0:
            for k in self.config.RETRIEVE.top_k_list:
                result[k] = {"recall": 0, "precision": 0}
            return result, 0, 0, 0
        all_paper_id_set = set(related_paper_id_list)
        all_paper_id_set.update(target_paper_id_list)
        all_paper_id_list = list(all_paper_id_set)
        paper_embedding_list = [
            self.paper_client.get_paper_attribute(paper_id, "embedding")
            for paper_id in target_paper_id_list
        ]
        paper_embedding = np.array(paper_embedding_list)
        paper_embedding_list = [
            self.paper_client.get_paper_attribute(paper_id, "contribution_embedding")
            for paper_id in target_paper_id_list
        ]
        paper_contribution_embedding = np.array(paper_embedding_list)
        paper_embedding_list = [
            self.paper_client.get_paper_attribute(paper_id, "summary_embedding")
            for paper_id in target_paper_id_list
        ]
        paper_summary_embedding = np.array(paper_embedding_list)
        weight_embedding = self.config.RETRIEVE.s_bg
        weight_contribution = self.config.RETRIEVE.s_contribution
        weight_summary = self.config.RETRIEVE.s_summary
        target_paper_embedding = (
            weight_embedding * paper_embedding
            + weight_contribution * paper_contribution_embedding
            + weight_summary * paper_summary_embedding
        )
        similarity_threshold = self.config.RETRIEVE.similarity_threshold
        similarity_matrix = np.dot(target_paper_embedding, target_paper_embedding.T)
        target_labels = self.cluster_algorithm(target_paper_id_list, similarity_matrix)
        # target_labels = list(range(0, len(target_paper_id_list)))
        target_paper_label_dict = dict(zip(target_paper_id_list, target_labels))
        logger.debug("Target paper cluster result: {}".format(target_paper_label_dict))
        logger.debug(
            {
                paper_id: self.paper_client.get_paper_attribute(paper_id, "title")
                for paper_id in target_paper_label_dict.keys()
            }
        )

        all_labels = []
        for paper_id in all_paper_id_list:
            paper_bg_embedding = [
                self.paper_client.get_paper_attribute(paper_id, "embedding")
            ]
            paper_bg_embedding = np.array(paper_bg_embedding)
            paper_contribution_embedding = [
                self.paper_client.get_paper_attribute(
                    paper_id, "contribution_embedding"
                )
            ]
            paper_contribution_embedding = np.array(paper_contribution_embedding)
            paper_summary_embedding = [
                self.paper_client.get_paper_attribute(paper_id, "summary_embedding")
            ]
            paper_summary_embedding = np.array(paper_summary_embedding)
            paper_embedding = (
                weight_embedding * paper_bg_embedding
                + weight_contribution * paper_contribution_embedding
                + weight_summary * paper_summary_embedding
            )
            similarities = cosine_similarity(paper_embedding, target_paper_embedding)[0]
            if np.any(similarities >= similarity_threshold):
                all_labels.append(target_labels[np.argmax(similarities)])
            else:
                all_labels.append(-1)  # other class: -1
        all_paper_label_dict = dict(zip(all_paper_id_list, all_labels))
        all_label_counts = Counter(all_paper_label_dict.values())
        logger.debug(f"all label counts : {all_label_counts}")
        target_label_counts = Counter(target_paper_label_dict.values())
        logger.debug(f"target label counts : {target_label_counts}")
        target_label_list = list(target_label_counts.keys())
        max_k = max(self.config.RETRIEVE.top_k_list)
        logger.info("=== Begin filter related paper ===")
        max_k_paper_id_list = self.filter_related_paper(score_all_dict, top_k=max_k)
        logger.info("=== End filter related paper ===")
        for k in self.config.RETRIEVE.top_k_list:
            # 前top k 的文章
            top_k = min(k, len(max_k_paper_id_list))
            top_k_paper_id_list = max_k_paper_id_list[:top_k]
            top_k_paper_label_dict = {}
            for paper_id in top_k_paper_id_list:
                top_k_paper_label_dict[paper_id] = all_paper_label_dict[paper_id]
            logger.debug(
                "=== top k {} paper id list : {}".format(k, top_k_paper_label_dict)
            )
            logger.debug(
                {
                    paper_id: self.paper_client.get_paper_attribute(paper_id, "title")
                    for paper_id in top_k_paper_label_dict.keys()
                }
            )
            top_k_label_counts = Counter(top_k_paper_label_dict.values())
            logger.debug(f"top K label counts : {top_k_label_counts}")
            top_k_label_list = list(top_k_label_counts.keys())
            match_label_list = list(set(target_label_list) & set(top_k_label_list))
            logger.debug(f"match label list : {match_label_list}")
            recall = 0
            precision = 0
            for label in match_label_list:
                recall += target_label_counts[label]
            for label in match_label_list:
                precision += top_k_label_counts[label]
            recall /= len(target_paper_id_list)
            precision /= len(top_k_paper_id_list)
            result[k] = {"recall": recall, "precision": precision}

        related_paper_id_list = list(score_all_dict.keys())
        related_paper_label_dict = {}
        for paper_id in related_paper_id_list:
            related_paper_label_dict[paper_id] = all_paper_label_dict[paper_id]
        related_label_counts = Counter(related_paper_label_dict.values())
        logger.debug(f"top K label counts : {related_label_counts}")
        related_label_list = list(related_label_counts.keys())
        match_label_list = list(set(target_label_list) & set(related_label_list))
        recall = 0
        precision = 0
        for label in match_label_list:
            recall += target_label_counts[label]
        for label in match_label_list:
            precision += related_label_counts[label]
        recall /= len(target_paper_id_list)
        precision /= len(related_paper_id_list)
        logger.debug(result)
        return result, len(target_label_counts), recall, precision


class RetrieverFactory(object):
    _instance = None
    _lock = threading.Lock()

    def __new__(cls, *args, **kwargs):
        with cls._lock:
            if cls._instance is None:
                cls._instance = super(RetrieverFactory, cls).__new__(
                    cls, *args, **kwargs
                )
                cls._instance.init_factory()
        return cls._instance

    def init_factory(self):
        self.retriever_classes = {}

    @staticmethod
    def get_retriever_factory():
        if RetrieverFactory._instance is None:
            RetrieverFactory._instance = RetrieverFactory()
        return RetrieverFactory._instance

    def register_retriever(self, retriever_name, retriever_class) -> bool:
        if retriever_name not in self.retriever_classes:
            self.retriever_classes[retriever_name] = retriever_class
            return True
        else:
            return False

    def delete_retriever(self, retriever_name) -> bool:
        if retriever_name in self.retriever_classes:
            self.retriever_classes[retriever_name] = None
            del self.retriever_classes[retriever_name]
            return True
        else:
            return False

    def __getitem__(self, key):
        return self.retriever_classes[key]

    def __len__(self):
        return len(self.retriever_classes)

    def create_retriever(self, retriever_name, *args, **kwargs) -> Retriever:
        if retriever_name not in self.retriever_classes:
            raise ValueError(f"Unknown retriever type: {retriever_name}")
        else:
            return self.retriever_classes[retriever_name](*args, **kwargs)


class autoregister:
    def __init__(self, retriever_name, *args, **kwds):
        self.retriever_name = retriever_name

    def __call__(self, cls, *args, **kwds):
        if RetrieverFactory.get_retriever_factory().register_retriever(
            self.retriever_name, cls
        ):
            cls.retriever_name = self.retriever_name
            return cls
        else:
            raise KeyError()


@autoregister("SN")
class SNRetriever(Retriever):
    def __init__(self, config):
        super().__init__(config)

    def retrieve_paper(self, bg):
        entities = []
        embedding = self.embedding_model.encode(bg, device=self.device)
        sn_paper_id_list = self.cosine_similarity_search(
            embedding=embedding,
            k=self.config.RETRIEVE.sn_retrieve_paper_num,
        )
        related_paper = set()
        related_paper.update(sn_paper_id_list)
        cocite_id_set = set()
        if self.use_cocite:
            for paper_id in related_paper:
                cocite_id_set.update(
                    self.cocite.get_cocite_ids(
                        paper_id, k=self.config.RETRIEVE.cocite_top_k
                    )
                )
            related_paper = related_paper.union(cocite_id_set)
        related_paper = list(related_paper)
        logger.debug(f"paper num before filter: {len(related_paper)}")
        result = {
            "embedding": embedding,
            "paper": related_paper,
            "entities": entities,
            "cocite_paper": list(cocite_id_set),
        }
        return result

    def retrieve(self, bg, entities, need_evaluate=True, target_paper_id_list=[]):
        """
        Args:
            context: string
        Return:
            list(dict)
        """
        if need_evaluate:
            if target_paper_id_list is None or len(target_paper_id_list) == 0:
                logger.error(
                    "If you need evaluate retriever, please input target paper is list..."
                )
            else:
                target_paper_id_list = list(set(target_paper_id_list))
        retrieve_result = self.retrieve_paper(bg)
        related_paper_id_list = retrieve_result["paper"]
        retrieve_paper_num = len(related_paper_id_list)
        _, _, score_all_dict = self.cal_related_score(
            retrieve_result["embedding"], related_paper_id_list=related_paper_id_list
        )
        top_k_matrix = {}
        recall = 0
        precision = 0
        filtered_recall = 0
        filtered_precision = 0
        if need_evaluate:
            top_k_matrix, label_num, recall, precision = self.eval_related_paper_in_all(
                score_all_dict, target_paper_id_list
            )
            logger.debug("Top P matrix:{}".format(top_k_matrix))
            logger.debug("before filter:")
            logger.debug(f"Recall: {recall:.3f}")
            logger.debug(f"Precision: {precision:.3f}")
        related_paper = self.filter_related_paper(score_all_dict, top_k=10)
        related_paper = self.update_related_paper(related_paper)
        result = {
            "recall": recall,
            "precision": precision,
            "filtered_recall": filtered_recall,
            "filtered_precision": filtered_precision,
            "related_paper": related_paper,
            "related_paper_id_list": related_paper_id_list,
            "cocite_paper_id_list": retrieve_result["cocite_paper"],
            "entities": retrieve_result["entities"],
            "top_k_matrix": top_k_matrix,
            "gt_reference_num": len(target_paper_id_list),
            "retrieve_paper_num": retrieve_paper_num,
            "label_num": label_num,
        }
        return result


@autoregister("KG")
class KGRetriever(Retriever):
    def __init__(self, config):
        super().__init__(config)

    def retrieve_paper(self, entities):
        new_entities = self.retrieve_entities_by_enties(entities)
        logger.debug("KG entities for retriever: {}".format(new_entities))
        related_paper = set()
        for entity in new_entities:
            paper_id_set = set(self.paper_client.find_paper_by_entity(entity))
            related_paper = related_paper.union(paper_id_set)
        cocite_id_set = set()
        if self.use_cocite:
            for paper_id in related_paper:
                cocite_id_set.update(self.cocite.get_cocite_ids(paper_id))
            related_paper = related_paper.union(cocite_id_set)
        related_paper = list(related_paper)
        logger.debug(f"paper num before filter: {len(related_paper)}")
        result = {
            "paper": related_paper,
            "entities": entities,
            "cocite_paper": list(cocite_id_set),
        }
        return result

    def retrieve(self, bg, entities, need_evaluate=True, target_paper_id_list=[]):
        """
        Args:
            context: string
        Return:
            list(dict)
        """
        if need_evaluate:
            if target_paper_id_list is None or len(target_paper_id_list) == 0:
                logger.error(
                    "If you need evaluate retriever, please input target paper is list..."
                )
            else:
                target_paper_id_list = list(set(target_paper_id_list))
                logger.debug(f"target paper id list: {target_paper_id_list}")
        retrieve_result = self.retrieve_paper(entities)
        related_paper_id_list = retrieve_result["paper"]
        retrieve_paper_num = len(related_paper_id_list)
        embedding = self.embedding_model.encode(bg, device=self.device)
        _, _, score_all_dict = self.cal_related_score(
            embedding, related_paper_id_list=related_paper_id_list
        )
        top_k_matrix = {}
        recall = 0
        precision = 0
        filtered_recall = 0
        filtered_precision = 0
        if need_evaluate:
            top_k_matrix, label_num, recall, precision = self.eval_related_paper_in_all(
                score_all_dict, target_paper_id_list
            )
            logger.debug("Top P ACC:{}".format(top_k_matrix))
            logger.debug("before filter:")
            logger.debug(f"Recall: {recall:.3f}")
            logger.debug(f"Precision: {precision:.3f}")
        related_paper = self.filter_related_paper(score_all_dict, top_k=10)
        related_paper = self.update_related_paper(related_paper)
        result = {
            "recall": recall,
            "precision": precision,
            "filtered_recall": filtered_recall,
            "filtered_precision": filtered_precision,
            "related_paper": related_paper,
            "related_paper_id_list": related_paper_id_list,
            "cocite_paper_id_list": retrieve_result["cocite_paper"],
            "entities": retrieve_result["entities"],
            "top_k_matrix": top_k_matrix,
            "gt_reference_num": len(target_paper_id_list),
            "retrieve_paper_num": retrieve_paper_num,
            "label_num": label_num,
        }
        return result


@autoregister("SNKG")
class SNKGRetriever(Retriever):
    def __init__(self, config):
        super().__init__(config)

    def retrieve_paper(self, bg, entities):
        sn_entities = []
        embedding = self.embedding_model.encode(bg, device=self.device)
        sn_paper_id_list = self.cosine_similarity_search(
            embedding, k=self.config.RETRIEVE.sn_num_for_entity
        )
        related_paper = set()
        related_paper.update(sn_paper_id_list)
        for paper_id in sn_paper_id_list:
            sn_entities += self.paper_client.find_entities_by_paper(paper_id)
        logger.debug("SN entities for retriever: {}".format(sn_entities))
        entities = list(set(entities + sn_entities))
        new_entities = self.retrieve_entities_by_enties(entities)
        logger.debug("SNKG entities for retriever: {}".format(new_entities))
        for entity in new_entities:
            paper_id_set = set(self.paper_client.find_paper_by_entity(entity))
            related_paper = related_paper.union(paper_id_set)
        cocite_id_set = set()
        if self.use_cocite:
            for paper_id in related_paper:
                cocite_id_set.update(self.cocite.get_cocite_ids(paper_id))
            related_paper = related_paper.union(cocite_id_set)
        related_paper = list(related_paper)
        result = {
            "embedding": embedding,
            "paper": related_paper,
            "entities": entities,
            "cocite_paper": list(cocite_id_set),
        }
        return result

    def retrieve(
        self, bg, entities, need_evaluate=True, target_paper_id_list=[], top_k=10
    ):
        """
        Args:
            context: string
        Return:
            list(dict)
        """
        if need_evaluate:
            if target_paper_id_list is None or len(target_paper_id_list) == 0:
                logger.error(
                    "If you need evaluate retriever, please input target paper is list..."
                )
            else:
                target_paper_id_list = list(set(target_paper_id_list))
                logger.debug(f"target paper id list: {target_paper_id_list}")
        retrieve_result = self.retrieve_paper(bg, entities)
        related_paper_id_list = retrieve_result["paper"]
        retrieve_paper_num = len(related_paper_id_list)
        logger.info("=== Begin cal related paper score ===")
        _, _, score_all_dict = self.cal_related_score(
            retrieve_result["embedding"], related_paper_id_list=related_paper_id_list
        )
        logger.info("=== End cal related paper score ===")
        top_k_matrix = {}
        recall = 0
        precision = 0
        filtered_recall = 0
        filtered_precision = 0
        label_num = 0
        if need_evaluate:
            top_k_matrix, label_num, recall, precision = self.eval_related_paper_in_all(
                score_all_dict, target_paper_id_list
            )
            logger.debug("Top K matrix:{}".format(top_k_matrix))
            logger.debug("before filter:")
            logger.debug(f"Recall: {recall:.3f}")
            logger.debug(f"Precision: {precision:.3f}")
        logger.info("=== Begin filter related paper score ===")
        related_paper = self.filter_related_paper(score_all_dict, top_k)
        logger.info("=== End filter related paper score ===")
        related_paper = self.update_related_paper(related_paper)
        result = {
            "recall": recall,
            "precision": precision,
            "filtered_recall": filtered_recall,
            "filtered_precision": filtered_precision,
            "related_paper": related_paper,
            "cocite_paper_id_list": retrieve_result["cocite_paper"],
            "related_paper_id_list": related_paper_id_list,
            "entities": retrieve_result["entities"],
            "top_k_matrix": top_k_matrix,
            "gt_reference_num": (
                len(target_paper_id_list) if target_paper_id_list is not None else 0
            ),
            "retrieve_paper_num": retrieve_paper_num,
            "label_num": label_num,
        }
        return result