File size: 22,651 Bytes
e17c9f2
 
 
 
 
 
 
 
 
 
 
b6336ac
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88253fe
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6336ac
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6336ac
e17c9f2
 
 
 
 
 
b6336ac
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6336ac
 
e17c9f2
 
 
 
 
 
 
 
 
de0c71d
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88253fe
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6336ac
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6336ac
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88253fe
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
from utils.paper_retriever import RetrieverFactory
from utils.paper_client import PaperClient
from utils.llms_api import APIHelper
from utils.header import ConfigReader
from omegaconf import OmegaConf
import click
import json
from loguru import logger
import warnings
import time
import os
from utils.hash import check_env, check_embedding
warnings.filterwarnings("ignore")


def extract_problem(problem, background):
    start_keyword = "**Research Problem**"
    end_keyword = "**Rationales**"
    start_index = problem.find(start_keyword)
    end_index = problem.find(end_keyword)
    if start_index != -1 and end_index != -1:
        research_problem = problem[start_index:end_index].strip()
    else:
        research_problem = background
    return research_problem

class IdeaGenerator:
    def __init__(
        self, config, paper_list: list[dict] = [], cue_words: list = None, brainstorm: str = None
    ) -> None:
        self.api_helper = APIHelper(config)
        self.paper_list = paper_list
        self.cue_words = cue_words
        self.brainstorm = brainstorm

    def generate_with_cue_words(self, background: str):
        problem, message_input = self.api_helper.generate_problem_with_cue_words(
            background, self.paper_list, self.cue_words
        )
        idea = self.api_helper.generate_idea_with_cue_words(
            problem, self.paper_list, self.cue_words
        )
        idea_filtered = self.api_helper.filter_idea(idea, background)
        return message_input, problem, idea, idea_filtered

    def generate_without_cue_words(self, background: str):
        problem, message_input = self.api_helper.generate_problem(
            background, self.paper_list
        )
        idea = self.api_helper.generate_idea(problem, self.paper_list)
        idea_filtered = self.api_helper.filter_idea(idea, background)
        return message_input, problem, idea, idea_filtered

    def generate_with_cue_words_bs(self, background: str):
        problem, message_input = self.api_helper.generate_problem_with_cue_words(
            background, self.paper_list, self.cue_words
        )
        idea = self.api_helper.generate_idea_with_cue_words(
            problem, self.paper_list, self.cue_words
        )
        idea_filtered = self.api_helper.integrate_idea(background, self.brainstorm, idea)
        return message_input, problem, idea, idea_filtered

    def generate_without_cue_words_bs(self, background: str):
        problem, message_input = self.api_helper.generate_problem(
            background, self.paper_list
        )
        idea = self.api_helper.generate_idea(problem, self.paper_list)
        idea_filtered = self.api_helper.integrate_idea(background, self.brainstorm, idea)
        return message_input, problem, idea, idea_filtered

    def generate_with_cue_words_ins(self, background: str):
        problem, message_input = self.api_helper.generate_problem_with_cue_words(
            background, self.paper_list, self.cue_words
        )
        research_problem = extract_problem(problem, background)
        inspirations = []
        for paper in self.paper_list:
            inspiration = self.api_helper.generate_inspiration_with_cue_words(
                research_problem, paper, self.cue_words
            )
            inspirations.append(inspiration)
        idea = self.api_helper.generate_idea_by_inspiration_with_cue_words(
            problem, inspirations, self.cue_words
        )
        idea_filtered = self.api_helper.filter_idea(idea, background)
        return message_input, problem, inspirations, idea, idea_filtered

    def generate_without_cue_words_ins(self, background: str):
        problem, message_input = self.api_helper.generate_problem(
            background, self.paper_list
        )
        research_problem = extract_problem(problem, background)
        inspirations = []
        for paper in self.paper_list:
            inspiration = self.api_helper.generate_inspiration(
                research_problem, paper
            )
            inspirations.append(inspiration)
        idea = self.api_helper.generate_idea_by_inspiration(
            problem, inspirations
        )
        idea_filtered = self.api_helper.filter_idea(idea, background)
        return message_input, problem, inspirations, idea, idea_filtered
    
    def generate_with_cue_words_ins_bs(self, background: str):
        problem, message_input = self.api_helper.generate_problem_with_cue_words(
            background, self.paper_list, self.cue_words
        )
        research_problem = extract_problem(problem, background)
        inspirations = []
        for paper in self.paper_list:
            inspiration = self.api_helper.generate_inspiration_with_cue_words(
                research_problem, paper, self.cue_words
            )
            inspirations.append(inspiration)
        idea = self.api_helper.generate_idea_by_inspiration_with_cue_words(
            problem, inspirations, self.cue_words
        )
        idea_filtered = self.api_helper.integrate_idea(background, self.brainstorm, idea)
        return message_input, problem, inspirations, idea, idea_filtered

    def generate_without_cue_words_ins_bs(self, background: str):
        problem, message_input = self.api_helper.generate_problem(
            background, self.paper_list
        )
        research_problem = extract_problem(problem, background)
        inspirations = []
        for paper in self.paper_list:
            inspiration = self.api_helper.generate_inspiration(
                research_problem, paper
            )
            inspirations.append(inspiration)
        idea = self.api_helper.generate_idea_by_inspiration(
            problem, inspirations
        )
        idea_filtered = self.api_helper.integrate_idea(background, self.brainstorm, idea)
        return message_input, problem, inspirations, idea, idea_filtered

    def generate(
        self,
        background: str,
        mode: str,
        bs_mode: str = None,
        use_cue_words: bool = False,
    ):
        mode_name = None
        if mode == "backtracking":
            mode_name = "Backtrack"
        elif mode == "new_idea":
            mode_name = "Generate new idea"
        if bs_mode == "mode_a":
            if use_cue_words:
                logger.info("{} using brainstorm_mode_a with cue words.".format(mode_name))
                (
                    message_input, 
                    problem, 
                    idea, 
                    idea_filtered
                ) = (
                    self.generate_with_cue_words(background)
                )
            else:
                logger.info("{} using brainstorm_mode_a without cue words.".format(mode_name))
                (
                    message_input, 
                    problem, 
                    idea, 
                    idea_filtered
                ) = (
                    self.generate_without_cue_words(background)
                )
        elif bs_mode == "mode_b" or bs_mode == "mode_c":
            if use_cue_words:
                logger.info("{} using brainstorm_{} with cue words.".format(mode_name, bs_mode))
                (
                    message_input, 
                    problem, 
                    idea, 
                    idea_filtered
                ) = (
                    self.generate_with_cue_words_bs(background)
                )
            else:
                logger.info("{} using brainstorm_{} without cue words.".format(mode_name, bs_mode))
                (
                    message_input, 
                    problem, 
                    idea, 
                    idea_filtered
                ) = (
                    self.generate_without_cue_words_bs(background)
                )

        idea_modified = self.api_helper.modify_idea(background, idea_filtered)
        median = {
            "problem": problem,
            "initial_idea": idea,
            "filtered_idea": idea_filtered,
        }
        return message_input, idea_modified, median

    def generate_by_inspiration(
        self,
        background: str,
        mode: str,
        bs_mode: str = None,
        use_cue_words: bool = False,
    ):
        mode_name = None
        if mode == "backtracking":
            mode_name = "Backtrack"
        elif mode == "new_idea":
            mode_name = "Generate new idea"
        if bs_mode == "mode_a":
            if use_cue_words:
                logger.info("{} using brainstorm_mode_a with cue words.".format(mode_name))
                (
                    message_input, 
                    problem,
                    inspirations, 
                    idea, 
                    idea_filtered
                ) = (
                    self.generate_with_cue_words_ins(background)
                )
            else:
                logger.info("{} using brainstorm_mode_a without cue words.".format(mode_name))
                (
                    message_input, 
                    problem, 
                    inspirations,
                    idea, 
                    idea_filtered
                ) = (
                    self.generate_without_cue_words_ins(background)
                )
        elif bs_mode == "mode_b" or bs_mode == "mode_c":
            if use_cue_words:
                logger.info("{} using brainstorm_{} with cue words.".format(mode_name, bs_mode))
                (
                    message_input, 
                    problem, 
                    inspirations,
                    idea, 
                    idea_filtered
                ) = (
                    self.generate_with_cue_words_ins_bs(background)
                )
            else:
                logger.info("{} using brainstorm_{} without cue words.".format(mode_name, bs_mode))
                (
                    message_input, 
                    problem, 
                    inspirations,
                    idea, 
                    idea_filtered
                ) = (
                    self.generate_without_cue_words_ins_bs(background)
                )

        idea_modified = self.api_helper.modify_idea(background, idea_filtered)
        median = {
            "problem": problem,
            "inspirations": inspirations,
            "initial_idea": idea,
            "filtered_idea": idea_filtered,
        }
        return message_input, idea_modified, median


@click.group()
@click.pass_context
def main(ctx):
    """
    Training and evaluation
    """
    print("Mode:", ctx.invoked_subcommand)


@main.command()
@click.option(
    "-c",
    "--config-path",
    default="./configs/datasets.yaml",
    type=click.File(),
    required=True,
    help="Dataset configuration file in YAML",
)
@click.option(
    "--ids-path",
    default="./assets/data/test_acl_2024.json",
    type=click.File(),
    required=True,
    help="Dataset configuration file in YAML",
)
@click.option(
    "-r",
    "--retriever-name",
    default="SNKG",
    type=str,
    required=True,
    help="Retrieve method",
)
@click.option(
    "--brainstorm-mode",
    default="mode_c",
    type=str,
    required=True,
    help="Choose your brainstorm mode (mode_a: no brainstorm, mode_b: brainstorm for idea generation, mode_c: brainstorm for idea generation and retrival)",
)
@click.option(
    "--use-cue-words",
    default=False,
    type=bool,
    required=True,
    help="Use cue words in generation",
)
@click.option(
    "--use-inspiration",
    default=False,
    type=bool,
    required=True,
    help="Use inspiration in generation",
)
@click.option(
    "--num",
    default=100,
    type=int,
    required=False,
    help="The number of papers you want to process",
)
def backtracking(config_path, ids_path, retriever_name, brainstorm_mode, use_cue_words, use_inspiration, num, **kwargs):
    check_env()
    check_embedding() 
    # Configuration
    config = ConfigReader.load(config_path, **kwargs)
    logger.add(
        "log/generate_{}_{}.log".format(time.time(), retriever_name),
        level=config.DEFAULT.log_level,
    )
    logger.info("\nretrieve name : {}".format(retriever_name))
    logger.info("Loaded configuration:\n{}".format(OmegaConf.to_yaml(config)))
    api_helper = APIHelper(config)
    paper_client = PaperClient()
    eval_data = []
    processed_ids = set()
    cur_num = 0
    batch_size = 2
    output_dir = "./assets/output_idea/"
    os.makedirs(output_dir, exist_ok=True)
    output_file = os.path.join(output_dir, f"output_backtracking_{brainstorm_mode}_cue_{use_cue_words}_ins_{use_inspiration}.json")
    if os.path.exists(output_file):
        with open(output_file, "r", encoding="utf-8") as f:
            try:
                eval_data = json.load(f)
                processed_ids = {paper["hash_id"] for paper in eval_data}
                cur_num = len(eval_data)
            except json.JSONDecodeError:
                print("Failed to decode JSON, initializing eval_data as an empty list.")
    print(f"{cur_num} papers have been processed.")
    for line in ids_path:
        # 解析每行的JSON数据
        paper = json.loads(line)
        if paper["hash_id"] in processed_ids:
            print(f"Skipping already processed paper: {paper_id}")
            continue
        logger.info("\nbegin generate paper hash id {}".format(paper["hash_id"]))
        # if "entities" in paper.keys():
        #     entities = paper["entities"]
        # else:
        # 1. 获取背景信息
        paper = paper_client.get_paper_by_id(paper["hash_id"])
        if "motivation" in paper.keys():
            bg = paper["motivation"]
        else:
            print(f"Paper hash_id {paper['hash_id']} doesn't have background...")
            continue
        if brainstorm_mode == "mode_b" or brainstorm_mode == "mode_c":
            brainstorm = api_helper.generate_brainstorm(bg)
        else:
            brainstorm = None
        if "entities" in paper.keys():
            entities = paper["entities"]
        else:
            entities = api_helper.generate_entity_list(bg)
        logger.debug("Original entities from background: {}".format(entities))
        if brainstorm_mode == "mode_c":
            entities_bs = api_helper.generate_entity_list(brainstorm, 10)
            logger.debug("Original entities from brainstorm: {}".format(entities_bs))
            entities_all = list(set(entities)|set(entities_bs))
        else:
            entities_bs = None
            entities_all = entities
        # 2. 获取真实引用文章 (用于评估)
        cite_type = "cite_id_list"
        # cite_type = config.RETRIEVE.cite_type
        if cite_type in paper and len(paper[cite_type]) >= 5:
            target_paper_id_list = paper[cite_type]
        else:
            logger.warning(
                "Hash ID {} cited paper num less than 5...".format(paper["hash_id"])
            )
            continue
        # 3. 检索相关论文
        rt = RetrieverFactory.get_retriever_factory().create_retriever(
            retriever_name, 
            config
        )
        result = rt.retrieve(
            bg, entities_all, need_evaluate=False, target_paper_id_list=[]
        )
        related_paper = result["related_paper"]
        logger.info("Find {} related papers...".format(len(related_paper)))
        entities_rt = result["entities"]
        # 4. 生成IDEA
        if use_cue_words:
            if "contribution" in paper.keys():
                cue_words = api_helper.generate_entity_list(paper["contribution"])
            else:
                print(f"Paper hash_id {paper['hash_id']} doesn't have contribution...")
                cue_words = None
        else:
            cue_words = None
        idea_generator = IdeaGenerator(config, related_paper, cue_words, brainstorm)
        if not use_inspiration:
            message_input, idea_modified, median = idea_generator.generate(
                bg, "backtracking", brainstorm_mode, use_cue_words
            )
        else:
            message_input, idea_modified, median = (
                idea_generator.generate_by_inspiration(
                    bg, "backtracking", brainstorm_mode, use_cue_words
                )
            )
        eval_data.append(
            {
                "hash_id": paper["hash_id"],
                "background": bg,
                "entities_bg": entities,
                "brainstorm" : brainstorm,
                "entities_bs": entities_bs,
                "entities_rt": entities_rt,
                "related_paper": [p["hash_id"] for p in related_paper],
                "input": message_input,
                "cue_words": cue_words,
                "median": median,
                "pred": idea_modified,
                "ground_truth": paper["ground_truth"],
            }
        )
        cur_num += 1
        if cur_num % batch_size == 0:
            with open(
                output_file,
                "w",
                encoding="utf-8",
            ) as f:
                json.dump(eval_data, f, ensure_ascii=False, indent=4)
        if cur_num >= num:
            break
    logger.info("=== Finish ===")
    with open(
        output_file,
        "w",
        encoding="utf-8",
    ) as f:
        json.dump(eval_data, f, ensure_ascii=False, indent=4)

@main.command()
@click.option(
    "-c",
    "--config-path",
    default="./configs/datasets.yaml",
    type=click.File(),
    required=True,
    help="Dataset configuration file in YAML",
)
@click.option(
    "--ids-path",
    default="./assets/data/test_background.json",
    type=click.File(),
    required=True,
    help="Dataset configuration file in YAML",
)
@click.option(
    "-r",
    "--retriever-name",
    default="SNKG",
    type=str,
    required=True,
    help="Retrieve method",
)
@click.option(
    "--brainstorm-mode",
    default="mode_c",
    type=str,
    required=True,
    help="Choose your brainstorm mode (mode_a: no brainstorm, mode_b: brainstorm for idea generation, mode_c: brainstorm for idea generation and retrival)",
)
@click.option(
    "--use-inspiration",
    default=False,
    type=bool,
    required=True,
    help="Use inspiration in generation",
)
@click.option(
    "--num",
    default=100,
    type=int,
    required=False,
    help="The number of data you want to process",
)
def new_idea(config_path, ids_path, retriever_name, brainstorm_mode, use_inspiration, num, **kwargs):
    check_env()
    check_embedding()
    logger.add(
        "log/generate_{}_{}.log".format(time.time(), retriever_name), level="DEBUG"
    )  # 添加文件输出
    logger.info("Retrieve name: {}".format(retriever_name))
    # Configuration
    config = ConfigReader.load(config_path, **kwargs)
    api_helper = APIHelper(config)
    eval_data = []
    cur_num = 0
    data_num = 0
    batch_size = 2
    bg_ids = set()
    output_dir = "./assets/output_idea/"
    os.makedirs(output_dir, exist_ok=True)
    output_file = os.path.join(output_dir, f"output_new_idea_{brainstorm_mode}_ins_{use_inspiration}.json")
    if os.path.exists(output_file):
        with open(output_file, "r", encoding="utf-8") as f:
            try:
                eval_data = json.load(f)
                bg_ids = {data["background"] for data in eval_data}
                cur_num = len(eval_data)
            except json.JSONDecodeError:
                eval_data = []
    print(f"{cur_num} datas have been processed.")
    for line in ids_path:
        # 解析每行的JSON数据
        data = json.loads(line)
        # 1. 获取背景信息
        if "background" in data.keys():
            bg = data["background"]
        else:
            data_num += 1
            print(f"This data doesn't have background...")
            continue
        if bg in bg_ids:
            data_num += 1
            print(f"Skipping already processed data_{data_num}.")
            continue
        if brainstorm_mode == "mode_b" or brainstorm_mode == "mode_c":
            brainstorm = api_helper.generate_brainstorm(bg)
        else:
            brainstorm = None
        if "cue_words" in data.keys():
            use_cue_words = True
            cue_words = data["cue_words"]
        else:
            use_cue_words = False
            cue_words = None
        entities = api_helper.generate_entity_list(bg)
        logger.debug("Original entities from background: {}".format(entities))
        if brainstorm_mode == "mode_c":
            entities_bs = api_helper.generate_entity_list(brainstorm, 10)
            logger.debug("Original entities from brainstorm: {}".format(entities_bs))
            entities_all = list(set(entities)|set(entities_bs))
        else:
            entities_bs = None
            entities_all = entities
        # 2. 检索相关论文
        rt = RetrieverFactory.get_retriever_factory().create_retriever(
            retriever_name,
            config
        )
        result = rt.retrieve(bg, entities_all, need_evaluate=False, target_paper_id_list=[])
        related_paper = result["related_paper"]
        logger.info("Find {} related papers...".format(len(related_paper)))
        entities_rt = result["entities"]
        # 3. 生成IDEA
        idea_generator = IdeaGenerator(config, related_paper, cue_words, brainstorm)
        if not use_inspiration:
            message_input, idea_modified, median = idea_generator.generate(
                bg, "new_idea", brainstorm_mode, use_cue_words
            )
        else:
            message_input, idea_modified, median = (
                idea_generator.generate_by_inspiration(
                    bg, "new_idea", brainstorm_mode, use_cue_words
                )
            )
        eval_data.append(
            {
                "background": bg,
                "entities_bg": entities,
                "brainstorm" : brainstorm,
                "entities_bs": entities_bs,
                "entities_rt": entities_rt,
                "related_paper": [p["hash_id"] for p in related_paper],
                "input": message_input,
                "cue_words": cue_words,
                "median": median,
                "pred": idea_modified,
            }
        )
        cur_num += 1
        if cur_num % batch_size == 0:
            with open(
                output_file,
                "w",
                encoding="utf-8",
            ) as f:
                json.dump(eval_data, f, ensure_ascii=False, indent=4)
        if cur_num >= num:
            break
    logger.info("=== Finish ===")
    with open(output_file, "w", encoding="utf-8") as f:
        json.dump(eval_data, f, ensure_ascii=False, indent=4)

if __name__ == "__main__":
    main()