File size: 28,575 Bytes
e17c9f2 a6a5155 e17c9f2 a6a5155 e17c9f2 a6a5155 e17c9f2 a6a5155 e17c9f2 a6a5155 e17c9f2 a6a5155 e17c9f2 a6a5155 e17c9f2 69e60be e17c9f2 69e60be e17c9f2 69e60be e17c9f2 a6a5155 e17c9f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
import os
import re
import json
import torch
from tqdm import tqdm
from neo4j import GraphDatabase
from collections import defaultdict, deque
from py2neo import Graph, Node, Relationship
from loguru import logger
class PaperClient:
_instance = None
_initialized = False
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = super(PaperClient, cls).__new__(cls)
return cls._instance
def __init__(self) -> None:
if not self._initialized:
self.driver = self.get_neo4j_driver()
self.teb_model = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
PaperClient._initialized = True
def get_neo4j_driver(self):
URI = os.environ["NEO4J_URL"]
NEO4J_USERNAME = os.environ["NEO4J_USERNAME"]
NEO4J_PASSWD = os.environ["NEO4J_PASSWD"]
AUTH = (NEO4J_USERNAME, NEO4J_PASSWD)
driver = GraphDatabase.driver(URI, auth=AUTH)
return driver
def update_paper_from_client(self, paper):
paper_id = paper["hash_id"]
if paper_id is None:
return None
query = f"""
MATCH (p:Paper {{hash_id: {paper_id}}})
RETURN p
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query).data())
if result:
paper_from_client = result[0]['p']
if paper_from_client is not None:
paper.update(paper_from_client)
def get_paper_attribute(self, paper_id, attribute_name):
query = f"""
MATCH (p:Paper {{hash_id: {paper_id}}})
RETURN p.{attribute_name} AS attributeValue
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query).data())
if result:
return result[0]['attributeValue']
else:
logger.error(f"paper id {paper_id} get {attribute_name} failed.")
return None
def get_paper_by_attribute(self, attribute_name, anttribute_value):
query = f"""
MATCH (p:Paper {{{attribute_name}: '{anttribute_value}'}})
RETURN p
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query).data())
if result:
return result[0]['p']
else:
return None
def get_paper_from_term(self, entity):
if entity is None:
return None
query = """
MATCH (p:Paper)
WHERE p.entity = $entity
RETURN p.hash_id as hash_id
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query, entity=entity).data())
if result:
return [record['hash_id'] for record in result]
else:
return []
def find_related_entities_by_entity(self, entity_name, n=1, k=3, relation_name="related"):
# relation_name = "related"
def bfs_query(entity_name, n, k):
queue = deque([(entity_name, 0)])
visited = set([entity_name])
related_entities = set()
while queue:
batch_queue = [queue.popleft() for _ in range(len(queue))]
batch_entities = [item[0] for item in batch_queue]
batch_depths = [item[1] for item in batch_queue]
if all(depth >= n for depth in batch_depths):
continue
if relation_name == "related":
query = """
UNWIND $batch_entities AS entity_name
MATCH (e1:Entity {name: entity_name})-[:RELATED_TO]->(p:Paper)<-[:RELATED_TO]-(e2:Entity)
WHERE e1 <> e2
WITH e1, e2, COUNT(p) AS common_papers, entity_name
WHERE common_papers > $k
RETURN e2.name AS entities, entity_name AS source_entity, common_papers
"""
elif relation_name == "connect":
query = """
UNWIND $batch_entities AS entity_name
MATCH (e1:Entity {name: entity_name})-[r:CONNECT]-(e2:Entity)
WHERE e1 <> e2 and r.strength >= $k
WITH e1, e2, entity_name
RETURN e2.name AS entities, entity_name AS source_entity
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query, batch_entities=batch_entities, k=k).data())
for record in result:
entity = record['entities']
source_entity = record['source_entity']
if entity not in visited:
visited.add(entity)
queue.append((entity, batch_depths[batch_entities.index(source_entity)] + 1))
related_entities.add(entity)
return list(related_entities)
related_entities = bfs_query(entity_name, n, k)
if entity_name in related_entities:
related_entities.remove(entity_name)
return related_entities
def find_entities_by_paper(self, hash_id: int):
query = """
MATCH (e:Entity)-[:RELATED_TO]->(p:Paper {hash_id: $hash_id})
RETURN e.name AS entity_name
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query, hash_id=hash_id).data())
if result:
return [record['entity_name'] for record in result]
else:
return []
def find_paper_by_entity(self, entity_name):
query = """
MATCH (e1:Entity {name: $entity_name})-[:RELATED_TO]->(p:Paper)
RETURN p.hash_id AS hash_id
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query, entity_name=entity_name).data())
if result:
return [record['hash_id'] for record in result]
else:
return []
# TODO: @云翔
# 增加通过entity返回包含entity语句的功能
def find_sentence_by_entity(self, entity_name):
# Return: list(str)
return []
def find_sentences_by_entity(self, entity_name):
query = """
MATCH (e:Entity {name: $entity_name})-[:RELATED_TO]->(p:Paper)
WHERE p.abstract CONTAINS $entity_name OR
p.introduction CONTAINS $entity_name OR
p.methodology CONTAINS $entity_name
RETURN p.abstract AS abstract,
p.introduction AS introduction,
p.methodology AS methodology,
p.hash_id AS hash_id
"""
sentences = []
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query, entity_name=entity_name).data())
for record in result:
for key in ['abstract', 'introduction', 'methodology']:
if record[key]:
filtered_sentences = [sentence.strip() + '.' for sentence in record[key].split('.') if entity_name in sentence]
sentences.extend([f"{record['hash_id']}: {sentence}" for sentence in filtered_sentences])
return sentences
def select_paper(self, venue_name, year):
query = """
MATCH (n:Paper) where n.year=$year and n.venue_name=$venue_name return n
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query, year=year, venue_name=venue_name).data())
if result:
return [record['n'] for record in result]
else:
return []
def add_paper_node(self, paper: dict):
if "summary" not in paper.keys():
paper["summary"] = None
if "abstract" not in paper.keys():
paper["abstract"] = None
if "introduction" not in paper.keys():
paper["introduction"] = None
if "reference" not in paper.keys():
paper["reference"] = None
if "cite" not in paper.keys():
paper["cite"] = None
if "motivation" not in paper.keys():
paper["motivation"] = None
if "contribution" not in paper.keys():
paper["contribution"] = None
if "methodology" not in paper.keys():
paper["methodology"] = None
if "ground_truth" not in paper.keys():
paper["ground_truth"] = None
if "reference_filter" not in paper.keys():
paper["reference_filter"] = None
if "conclusions" not in paper.keys():
paper["conclusions"] = None
query = """
MERGE (p:Paper {hash_id: $hash_id})
ON CREATE SET p.venue_name = $venue_name, p.year = $year, p.title = $title, p.pdf_url = $pdf_url, p.abstract = $abstract, p.introduction = $introduction, p.reference = $reference, p.summary = $summary, p.motivation = $motivation, p.contribution = $contribution, p.methodology = $methodology, p.ground_truth = $ground_truth, p.reference_filter = $reference_filter, p.conclusions = $conclusions
ON MATCH SET p.venue_name = $venue_name, p.year = $year, p.title = $title, p.pdf_url = $pdf_url, p.abstract = $abstract, p.introduction = $introduction, p.reference = $reference, p.summary = $summary, p.motivation = $motivation, p.contribution = $contribution, p.methodology = $methodology, p.ground_truth = $ground_truth, p.reference_filter = $reference_filter, p.conclusions = $conclusions
RETURN p
"""
with self.driver.session() as session:
result = session.execute_write(lambda tx: tx.run(query, hash_id=paper["hash_id"], venue_name=paper["venue_name"], year=paper["year"], title=paper["title"], pdf_url=paper["pdf_url"], abstract=paper["abstract"], introduction=paper["introduction"], reference=paper["reference"], summary=paper["summary"], motivation=paper["motivation"], contribution=paper["contribution"], methodology=paper["methodology"], ground_truth=paper["ground_truth"], reference_filter=paper["reference_filter"], conclusions=paper["conclusions"]).data())
def check_entity_node_count(self, hash_id: int):
query_check_count = """
MATCH (e:Entity)-[:RELATED_TO]->(p:Paper {hash_id: $hash_id})
RETURN count(e) AS entity_count
"""
with self.driver.session() as session:
# Check the number of related entities
result = session.execute_read(lambda tx: tx.run(query_check_count, hash_id=hash_id).data())
if result[0]["entity_count"] > 3:
return False
return True
def add_entity_node(self, hash_id: int, entities: list):
query = """
MERGE (e:Entity {name: $entity_name})
WITH e
MATCH (p:Paper {hash_id: $hash_id})
MERGE (e)-[:RELATED_TO]->(p)
RETURN e, p
"""
with self.driver.session() as session:
for entity_name in entities:
result = session.execute_write(lambda tx: tx.run(query, entity_name=entity_name, hash_id=hash_id).data())
def add_paper_citation(self, paper: dict):
query = """
MERGE (p:Paper {hash_id: $hash_id}) ON MATCH SET p.cite_id_list = $cite_id_list, p.entities = $entities, p.all_cite_id_list = $all_cite_id_list
"""
with self.driver.session() as session:
result = session.execute_write(lambda tx: tx.run(query, hash_id=paper["hash_id"], cite_id_list=paper["cite_id_list"], entities=paper["entities"], all_cite_id_list=paper["all_cite_id_list"]).data())
def add_paper_abstract_embedding(self, embedding_model, hash_id=None):
if hash_id is not None:
query = """
MATCH (p:Paper {hash_id: $hash_id})
WHERE p.abstract IS NOT NULL
RETURN p.abstract AS context, p.hash_id AS hash_id, p.title AS title
"""
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query, hash_id=hash_id).data())
else:
query = """
MATCH (p:Paper)
WHERE p.abstract IS NOT NULL
RETURN p.abstract AS context, p.hash_id AS hash_id, p.title AS title
"""
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query).data())
contexts = [result["title"] + result["context"] for result in results]
paper_ids = [result["hash_id"] for result in results]
context_embeddings = embedding_model.encode(contexts, batch_size=512, convert_to_tensor=True, device=self.device)
query = """
MERGE (p:Paper {hash_id: $hash_id})
ON CREATE SET p.abstract_embedding = $embedding
ON MATCH SET p.abstract_embedding = $embedding
"""
for idx, hash_id in tqdm(enumerate(paper_ids)):
embedding = context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query, hash_id=hash_id, embedding=embedding).data())
def add_paper_bg_embedding(self, embedding_model, hash_id=None):
if hash_id is not None:
query = """
MATCH (p:Paper {hash_id: $hash_id})
WHERE p.motivation IS NOT NULL
RETURN p.motivation AS context, p.hash_id AS hash_id
"""
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query, hash_id=hash_id).data())
else:
query = """
MATCH (p:Paper)
WHERE p.motivation IS NOT NULL
RETURN p.motivation AS context, p.hash_id AS hash_id
"""
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query).data())
contexts = [result["context"] for result in results]
paper_ids = [result["hash_id"] for result in results]
context_embeddings = embedding_model.encode(contexts, batch_size=256, convert_to_tensor=True, device=self.device)
query = """
MERGE (p:Paper {hash_id: $hash_id})
ON CREATE SET p.embedding = $embedding
ON MATCH SET p.embedding = $embedding
"""
for idx, hash_id in tqdm(enumerate(paper_ids)):
embedding = context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query, hash_id=hash_id, embedding=embedding).data())
def add_paper_contribution_embedding(self, embedding_model, hash_id=None):
if hash_id is not None:
query = """
MATCH (p:Paper {hash_id: $hash_id})
WHERE p.contribution IS NOT NULL
RETURN p.contribution AS context, p.hash_id AS hash_id
"""
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query, hash_id=hash_id).data())
else:
query = """
MATCH (p:Paper)
WHERE p.contribution IS NOT NULL
RETURN p.contribution AS context, p.hash_id AS hash_id
"""
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query).data())
contexts = [result["context"] for result in results]
paper_ids = [result["hash_id"] for result in results]
context_embeddings = embedding_model.encode(contexts, batch_size=256, convert_to_tensor=True, device=self.device)
query = """
MERGE (p:Paper {hash_id: $hash_id})
ON CREATE SET p.contribution_embedding = $embedding
ON MATCH SET p.contribution_embedding = $embedding
"""
for idx, hash_id in tqdm(enumerate(paper_ids)):
embedding = context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query, hash_id=hash_id, embedding=embedding).data())
def add_paper_summary_embedding(self, embedding_model, hash_id=None):
if hash_id is not None:
query = """
MATCH (p:Paper {hash_id: $hash_id})
WHERE p.summary IS NOT NULL
RETURN p.summary AS context, p.hash_id AS hash_id
"""
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query, hash_id=hash_id).data())
else:
query = """
MATCH (p:Paper)
WHERE p.summary IS NOT NULL
RETURN p.summary AS context, p.hash_id AS hash_id
"""
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query).data())
contexts = [result["context"] for result in results]
paper_ids = [result["hash_id"] for result in results]
context_embeddings = embedding_model.encode(contexts, batch_size=256, convert_to_tensor=True, device=self.device)
query = """
MERGE (p:Paper {hash_id: $hash_id})
ON CREATE SET p.summary_embedding = $embedding
ON MATCH SET p.summary_embedding = $embedding
"""
for idx, hash_id in tqdm(enumerate(paper_ids)):
embedding = context_embeddings[idx].detach().cpu().numpy().flatten().tolist()
with self.driver.session() as session:
results = session.execute_write(lambda tx: tx.run(query, hash_id=hash_id, embedding=embedding).data())
def cosine_similarity_search(self, embedding, k=1, type_name="embedding"):
query = f"""
MATCH (paper:Paper)
WITH paper,
vector.similarity.cosine(paper.{type_name}, $embedding) AS score
WHERE score > 0
RETURN paper, score
ORDER BY score DESC LIMIT {k}
"""
with self.driver.session() as session:
results = session.execute_read(lambda tx: tx.run(query, embedding=embedding).data())
related_paper = []
for result in results:
related_paper.append(result["paper"]["hash_id"])
return related_paper
def create_vector_index(self):
"""
适用于Paper节点
针对Paper节点上的是属性 embedding 进行索引
索引向量的维度为384
适用余弦相似度作为计算相似度的方法
"""
query = """
CREATE VECTOR INDEX `paper-embeddings`
FOR (n:Paper) ON (n.embedding)
OPTIONS {indexConfig: {
`vector.dimensions`: 384,
`vector.similarity_function`: 'cosine'
}}
"""
with self.driver.session() as session:
session.execute_write(lambda tx: tx.run(query).data())
def filter_paper_id_list(self, paper_id_list, year="2024"):
if not paper_id_list:
return []
# WHERE p.year < "2024" AND p.venue_name <> "acl"
query = """
UNWIND $paper_id_list AS hash_id
MATCH (p:Paper {hash_id: hash_id})
WHERE p.year < $year
RETURN p.hash_id AS hash_id
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query, paper_id_list=paper_id_list, year=year).data())
existing_paper_ids = [record['hash_id'] for record in result]
existing_paper_ids = list(set(existing_paper_ids))
return existing_paper_ids
def check_index_exists(self):
query = "SHOW INDEXES"
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query).data())
for record in result:
if record["name"] == "paper-embeddings":
return True
return False
def clear_database(self):
query = """
MATCH (n)
DETACH DELETE n
"""
with self.driver.session() as session:
session.execute_write(lambda tx: tx.run(query).data())
def get_entity_related_paper_num(self, entity_name):
query = """
MATCH (e:Entity {name: $entity_name})-[:RELATED_TO]->(p:Paper)
WITH COUNT(p) AS PaperCount
RETURN PaperCount
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query, entity_name=entity_name).data())
paper_num = result[0]['PaperCount']
return paper_num
def get_entity_text(self):
query = """
MATCH (e:Entity)-[:RELATED_TO]->(p:Paper)
WHERE p.venue_name = $venue_name and p.year = $year
WITH p, collect(e.name) AS entity_names
RETURN p, reduce(text = '', name IN entity_names | text + ' ' + name) AS entity_text
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query).data())
text_list = [record['entity_text'] for record in result]
return text_list
def get_entity_combinations(self, venue_name, year):
def process_paper_relationships(session, entity_name_1, entity_name_2, abstract):
if entity_name_2 < entity_name_1:
entity_name_1, entity_name_2 = entity_name_2, entity_name_1
query = """
MATCH (e1:Entity {name: $entity_name_1})
MATCH (e2:Entity {name: $entity_name_2})
MERGE (e1)-[r:CONNECT]->(e2)
ON CREATE SET r.strength = 1
ON MATCH SET r.strength = r.strength + 1
"""
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', abstract)
for sentence in sentences:
sentence = sentence.lower()
if entity_name_1 in sentence and entity_name_2 in sentence:
# 如果两个实体在同一句话中出现过,则创建或更新 CONNECT 关系
session.execute_write(
lambda tx: tx.run(query, entity_name_1=entity_name_1, entity_name_2=entity_name_2).data()
)
# logger.debug(f"CONNECT relation created or updated between {entity_name_1} and {entity_name_2} for Paper ID {paper_id}")
break # 如果找到一次出现就可以退出循环
query = """
MATCH (e:Entity)-[:RELATED_TO]->(p:Paper)
WHERE p.venue_name=$venue_name and p.year=$year
WITH p, collect(e) as entities
UNWIND range(0, size(entities)-2) as i
UNWIND range(i+1, size(entities)-1) as j
RETURN p.hash_id AS hash_id, entities[i].name AS entity_name_1, entities[j].name AS entity_name_2
"""
with self.driver.session() as session:
result = session.execute_read(lambda tx: tx.run(query, venue_name=venue_name, year=year).data())
for record in tqdm(result):
paper_id = record["hash_id"]
entity_name_1 = record['entity_name_1']
entity_name_2 = record['entity_name_2']
abstract = self.get_paper_attribute(paper_id, "abstract")
process_paper_relationships(session, entity_name_1, entity_name_2, abstract)
def build_citemap(self):
citemap = defaultdict(set)
query = """
MATCH (p:Paper)
RETURN p.hash_id AS hash_id, p.cite_id_list AS cite_id_list
"""
with self.driver.session() as session:
results = session.execute_read(lambda tx: tx.run(query).data())
for result in results:
hash_id = result['hash_id']
cite_id_list = result['cite_id_list']
if cite_id_list:
for cited_id in cite_id_list:
citemap[hash_id].add(cited_id)
return citemap
def neo4j_backup(self):
URI = os.environ["NEO4J_URL"]
NEO4J_USERNAME = os.environ["NEO4J_USERNAME"]
NEO4J_PASSWD = os.environ["NEO4J_PASSWD"]
AUTH = (NEO4J_USERNAME, NEO4J_PASSWD)
graph = Graph(URI, auth=AUTH)
# 创建一个字典来保存数据
data = {"nodes": [], "relationships": []}
query = """
MATCH (e:Entity)-[r:RELATED_TO]->(p:Paper)
WHERE p.venue_name='iclr' and p.year='2024'
RETURN p, e, r
"""
results = graph.run(query)
# 处理查询结果
for record in tqdm(results):
paper_node = record["p"]
entity_node = record["e"]
relationship = record["r"]
# 将节点数据加入字典
data["nodes"].append({
"id": paper_node.identity,
"label": "Paper",
"properties": dict(paper_node)
})
data["nodes"].append({
"id": entity_node.identity,
"label": "Entity",
"properties": dict(entity_node)
})
# 将关系数据加入字典
data["relationships"].append({
"start_node": entity_node.identity,
"end_node": paper_node.identity,
"type": "RELATED_TO",
"properties": dict(relationship)
})
query = """
MATCH (p:Paper)
WHERE p.venue_name='acl' and p.year='2024'
RETURN p
"""
"""
results = graph.run(query)
for record in tqdm(results):
paper_node = record["p"]
# 将节点数据加入字典
data["nodes"].append({
"id": paper_node.identity,
"label": "Paper",
"properties": dict(paper_node)
})
"""
# 去除重复节点
# data["nodes"] = [dict(t) for t in {tuple(d.items()) for d in data["nodes"]}]
unique_nodes = []
seen = set()
for node in tqdm(data["nodes"]):
# 将字典项转换为不可变的元组,以便用于集合去重
node_tuple = str(tuple(sorted(node.items())))
if node_tuple not in seen:
seen.add(node_tuple)
unique_nodes.append(node)
data["nodes"] = unique_nodes
# 将数据保存为 JSON 文件
with open("./assets/data/scipip_neo4j_clean_backup.json", "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=4)
def neo4j_import_data(self):
# clear_database() # 清空数据库,谨慎执行
URI = os.environ["NEO4J_URL"]
NEO4J_USERNAME = os.environ["NEO4J_USERNAME"]
NEO4J_PASSWD = os.environ["NEO4J_PASSWD"]
AUTH = (NEO4J_USERNAME, NEO4J_PASSWD)
graph = Graph(URI, auth=AUTH)
# 从 JSON 文件中读取数据
with open("./assets/data/scipip_neo4j_clean_backup.json", "r", encoding="utf-8") as f:
data = json.load(f)
# 创建节点
nodes = {}
for node_data in data["nodes"]:
label = node_data["label"]
properties = node_data["properties"]
node = Node(label, **properties)
graph.create(node)
nodes[node_data["id"]] = node
# 创建关系
for relationship_data in data["relationships"]:
start_node = nodes[relationship_data["start_node"]]
end_node = nodes[relationship_data["end_node"]]
properties = relationship_data["properties"]
rel_type = relationship_data["type"]
relationship = Relationship(start_node, rel_type, end_node, **properties)
graph.create(relationship)
def get_paper_by_id(self, hash_id):
paper = {"hash_id": hash_id}
self.update_paper_from_client(paper)
return paper
if __name__ == "__main__":
paper_client = PaperClient()
# paper_client.neo4j_backup()
paper_client.neo4j_import_data()
|