File size: 6,411 Bytes
9af845a e7f10cc 9af845a 88253fe 9af845a 88253fe c8709b2 88253fe c8709b2 88253fe c8709b2 88253fe c8709b2 88253fe c8709b2 88253fe c8709b2 88253fe c8709b2 88253fe c8709b2 88253fe c8709b2 88253fe c8709b2 88253fe c8709b2 88253fe c8709b2 88253fe 396ef8b 3a22d54 88253fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
title: SciPIP
emoji: π₯
colorFrom: pink
colorTo: indigo
sdk: streamlit
sdk_version: 1.40.0
app_file: app.py
pinned: false
license: mit
short_description: Quickly generating novel research ideas.
---
<center><h1> π‘SciPIP: An LLM-based Scientific Paper Idea Proposer </h1></center>
<div align="center">
<p>
<a href="https://github.com/cheerss/SciPIP/issues">
<img src="https://img.shields.io/github/issues/cheerss/SciPIP" alt="GitHub issues">
</a>
<a href="LICENSE">
<img src="https://img.shields.io/github/license/cheerss/SciPIP" alt="License">
</a>
<a href="https://arxiv.org/abs/2410.23166">
<img src="https://img.shields.io/badge/arXiv-2410.23166-b31b1b" alt="arXiv">
</a>
<img src="https://img.shields.io/github/stars/cheerss/SciPIP?color=green&style=social" alt="GitHub stars">
<img src="https://img.shields.io/badge/python->=3.10.3-blue" alt="Python version">
</p>
</div>

## Introduction
SciPIP is a scientific paper idea generation tool powered by a large language model (LLM) designed to **assist researchers in quickly generating novel research ideas**. Based on the background information provided by the user, SciPIP first conducts a literature review to identify relevant research, then generates fresh ideas for potential studies.

π€ Try it on the Hugging Face: https://huggingface.co/spaces/lihuigu/SciPIP (The demo uses the old version code temporally and will be updated soon.)
## Updates
- [x] Idea generation in a GUI enviroment (web app).
- [x] Idea generation for the NLP and multimodal field.
- [x] Idea generation for the CV field.
- [ ] Idea generation for other fields.
- [x] Release the Huggingface demo.
- [x] Support DeepSeek-v3 as an backend, now. π π π
## Prerequisites
The following enviroments are tested under Ubuntu 22.04 with python>=3.10.3.
1. **Install essential packages**, feel free to copy and paste the following commans into your terminal. After that, you can visit your Neo4j databse in a browser.
```bash
## Install git-lfs
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt install git-lfs
## Create new conda environment scipip
conda env create -f environment.yml
conda activate scipip
## Install Neo4j database
sudo apt install -y openjdk-17-jre # Install Neo4j required JDK
# cd ~/Downloads # or /your/path/to/download/Neo4j
wget http://dist.neo4j.org/neo4j-community-5.25.1-unix.tar.gz
tar -xvf neo4j-community-5.25.1-unix.tar.gz
## Start Neo4j
cd ./neo4j-community-5.25.1
# Uncomment server.default_listen_address=0.0.0.0 in conf/neo4j.conf to visit Neo4j through a browser
sed -i 's/# server.default_listen_address=0.0.0.0/server.default_listen_address=0.0.0.0/g' ./conf/neo4j.conf
./bin/neo4j start
# Default URL for neo4j is "http://127.0.0.1:7474"
# Default URI for ner4j is "bolt://127.0.0.1:7687"
# Default username and password for neo4j database are both "neo4j"
# !![IMPORTANT] You must visit "http://127.0.0.1:7474" and change the default password before next step. It is because Neo4j does not permit running with a default password.
```
2. **Clone this repository (SciPIP) and edit the configuration files.** Specifically, LLMs' API token and the Neo4j' username/password are need configuring, and we have provided the template.
```bash
## Clone our repository
git clone [email protected]:cheerss/SciPIP.git && cd SciPIP
## Edit scripts/env.sh
# Must be corrected: NEO4J_USERNAME / NEO4J_PASSWD / MODEL_API_KEY / MODEL_URL
# Others are optional
## source env
source scripts/env.sh
```
3. **Prepare the literature database**
1. Download the literature data from [google_drive](https://drive.google.com/file/d/1kZmJff8am-JGegZZQx0qxlC7o7YgBURg/view?usp=sharing) or [baidu disk](https://pan.baidu.com/s/1S22Evi5ReL0MvahFoQ-ipA?pwd=scip). Replace the `/your/path/neo4j-community-5.25.1/data` folder with our provided `data` folder, which contains literature of CV, NLP, ML, *etc.*
2. [Optional] Prepare the embedding model. Our algorithm uses **jina-embedding v3** and will automatically download it from Huggingface the first time the program is run. However, if you're concerned about potential download failures due to network issues, you can download it in advance and place it in the specified directory.
```bash
cd /root/path/of/SciPIP && mkdir -p assets/model/
git clone https://huggingface.co/jinaai/jina-embeddings-v3 assets/model
```
## Run In a Browser (Recommended)
```bash
streamlit run app.py
# OR
python -m streamlit run app.py
```
Then, visit `http://localhost:8501` in your browser with an interactive enviroment.
## Run In a Terminal
**1. Generate new idea**
Input your backgound in `assets/data/test_background.json`
```
python src/generator.py new-idea --brainstorm-mode mode_c --use-inspiration True --num 2
```
Results dump in `assets/output_idea/output-file.json`.
## Others
### Database Construction
SciPIP uses Neo4j as its database. You can directly import the provided data or add your own research papers.ddddddsfasdfldsafkldsjfdkls
```
wget https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl
pip install en_core_web_sm-3.7.1-py3-none-any.whl
```
The directory for storing papers can be modified in the `pdf_cached` field of `configs/datasets.yaml`.
**1. Generate json list**
```
python src/paper_manager.py crawling --year all --venue-name nips
```
json files are saved at `./assets/paper/<$venue-name>/<$year>`
**2. Fetch Papers**
[] arxiv
[] nips
[] icml
[] cvpr
[] eccv/iccv
[] iclr
[] acl
[] naacl
[] emnlp
```
python src/paper_manager.py update --year all --venue-name nips
```
## Cite Us
```
@article{wang2024scipip,
title={SciPIP: An LLM-based Scientific Paper Idea Proposer},
author={Wenxiao Wang, Lihui Gu, Liye Zhang, Yunxiang Luo, Yi Dai, Chen Shen, Liang Xie, Binbin Lin, Xiaofei He, Jieping Ye},
journal={arXiv preprint arXiv:2410.23166},
url={https://arxiv.org/abs/2410.23166},
year={2024}
}
```
## Help Us To Improve
https://forms.gle/YpLUrhqs1ahyCAe99
Thank you for your use! We hope SciPIP can help you generate research ideas! π
|